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This article defines and demonstrates a framework for studying differential item 
functioning (DIF) and differential test functioning (DTF) for tests that are intended 
to be multidimensional The procedure introduced here is an extension of unidi- 
mensional differential functioning of items and tests (DFIT) recently developed by 
Raju, van der Linden, & Fleer (1995). To demonstrate the usefulness of these new 
indexes in a multidimensional IRT setting, two-dimensional data were simulated 
with known item parameters and known DIF and DTE The DIF and DTF indexes 
were recovered reasonably well under various distributional differences of Os after 
multidimensional linking was applied to put the two sets of item parameters on a 
common scale. Further studies are suggested in the area of DIF/DTF for intention- 
ally multidimensional tests. 

Although most currently used models in item response theory (IRT) are based on 
the unidimensionality assumption, many researchers agree that educational and 
psychological test data do not always satisfy the unidimensionality assumption 
(e.g., Ackerman, 1991; Traub, 1983). For example, a test such as a licensure exam 
may measure several subsets of skills. Another type of multidimensional test may 
consist of items that require the composite of two or more intentionally defined 
abilities. For example, a math test may measure a composite skill of mathematics 
and reading throughout the test, with each item having a different emphasis of  the 
two skills. According to Wang, Wilson, and Adams (1995), the first type of 
multidimensional test is called the multidimensional between-item test, and the 
latter type is called the multidimensional within-item test. 

Differential item functioning (DIF) or differential test functioning (DTF) for 
intentionally multidimensional tests should be clearly distinguished from DIF de- 
fined for unintentionally multidimensional tests. DIF for intentionally multidimen- 
sional tests is defined as the distributional differences on the additional trait(s). If  
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the intentionally measured dimensions are defined in the context of a multidimen- 
sional IRT model, distributional differences on any of the intentionally measured 
dimensions should not indicate DIE 

Recently Raju, van der Linden, and Fleer 0992,  1995) introduced an IRT-based 
framework for assessing differential functioning of items and tests (DFIT). This 
DFIT framework offers a general procedure for assessing DIF/DTF in tests devel- 
oped with unidimensional, multidimensional, or polytomous models. The DFIT 
indexes fall into the class of parametric IRT-based DIF/DTF indexes. Other indexes 
in this class are Lord's (1980) chi-square, area measures (Raju, 1988; Rudner 
1977), and the likelihood ratio test (Thissen, Steinberg, & Wainer, 1988). At the 
present time, these other procedures cannot handle multidimensional IRT models. 
Furthermore, these other procedures do not assess DTF. 

Raju et al. (1995) offered a detailed description of DFIT only for the unidimen- 
sional case. The purpose of this research is to provide an extended description of 
this new technique for the multidimensional case and to offer a demonsa'ation of 
this technique using simulated intentionally two-dimensional data with known DIF 
and DTF. 

DFIT for Multidimensional Tests 

Differential Test Functioning 

According to a multidimensional extension of the two-parameter logistic (M2PL) 
model (Reckase, 1985; Reckase & McKinley, 1991), the probability of success on 
item i for an examinee can be written as 

1 
Pi(O) = I + e -  I.~(a; o + b,)" (1) 

where a i is an m x 1 vector of item discrimination parameters, bi (commonly 
known as di) ~ is a scalar parameter related to the difficulty of the item, 0 is an m x 
1 vector of ability parameters for the examinee, and m is the number of ability 
dimensions. Let the test consist of k items and have one set of item parameters for 
each of two groups (reference group and focal group). Let us also assume that the 
two sets of item parameters are on a common scale. Now, let PiR(0) represent the 
probability of success on item i for an examinee as if he or she were a member of 
the reference group; similarly, let PiF(O) represent the probability of success for the 
same examinee on the same item as if he or she were a member of  the focal group. 
In computing P,~(0), item parameters (ai and b i) based on the reference group are 
used in Equation 1. Similarly, for P,~0), item parameters based on the focal group 
are used. The same vector of  0, however, is used in both computations. If an item 
were functioning differently in the two groups, then Pro(0) and PI~0) would be 
different for a given examinee. 

An examinee's true score, within the IRT context, can be expressed as 

k 

T = ~ P i  (0). (2) 
i=l 

In the present setup, each examinee will have two true scores, one for being a 
member of the focal group (TF) and the other for being a member of  the reference 
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group (TR). If  TR and Tv are equal for an examinee, then the examinee's true score 
is independent of  group membership. The greater the difference between TR and T F, 
the greater the DTF. A DTF measure at the examinee level may be defined as (T F - 
TR) 2. Letting D = T F - T R, an overall measure of DTF across examinees may be 
defined as 

D T F  = EF(T F - TR) 2 = EFD 2 = tr 2 + (PTF -- PTR) 2 = tr2 + P20, (3) 

where the expectation (E) can be taken over the reference group or focal group and 
p and cr refer to the mean and standard deviation, respectively. We will assume that 
the expectation is taken over the focal group. The D T F  given in Equation 3 was 
used by Stocking and Lord (1983) in the context of  scale transformation. 

Differential  I tem Funct ioning 

CDIE  Equation 3 can be rewritten as 

k k k 

D T F  = EF(D 2) = E F [ ~ ,  (diD) ] = ~ ,  EF(diD) = ~ [Cov(di, D) + Pd, Po] ,  (4) 
i = l  i = l  i=1 

k 

where d i ~ PiF(O) - Pro(0), ~ d  i m D = T F - T R, and Cov(d  i, D)  is the covariance 
~=1 

between the difference in item probabilities for item i (di) and the difference 
between the two true scores (D). The expectation is again taken over the focal 
group. One definition of  differential functioning at the item level may be expressed 

a s  

C D I F  i = EF(diD ) = Cov(di, D) + Pd, PO" (5) 

The notation C D I F  stands for compensatory DIE  and it will be distinguished from 
noncompensatory DIF (NCDIF), to be defined later. Combining Equations 4 and 5, 

we obtain 
k 

D T F  = ~ ,  COTE,.  (6) 
i = l  

Equation 6 shows that the definition of  CDIF,  is additive in the sense that differen- 
tial functioning at the test level is simply the sum of compensatory differential 
functioning at the item level. Therefore, a positive C D I F  for one item may partially 
or fully cancel a negative C D I F  for another item in terms of  their contribution to 
DTF. F u r t h e r ,  the covariance term in Equation 5 reflects the correlated DIF 

between items; that is, since for item i, 

Cov(d i, D) = tr 2 + ~ Cov(di, dj), i :# j ,  d, 

CDIF for item i includes correlated DIF between item i and any other item in Me 

test.  

Rewriting Equation 3, one obtains 

k 
D I F  = E r ~ , ( P ~  - p,a)]2 = EF[(PIF -- PIR) + (P2F- P2R) + " "  + (Pry - PtR)] 2- (7) 

i ~ I 
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Equation 7 shows the compensating nature of the proposed DTF. For example, if 
P6F -- P6R ~= - - .2  and PTF -- PTR =' +.2 for a given examinee, then the DIF in Item 
6 cancels out with the DIF in Item 7, and the two items together contribute zero to 
the examinee's DTF score. The proposed DTF, therefore, takes into account com- 
pensating DIF across items at the examinee level. In addition, Equation 6 shows the 
nature of compensating DIF across items at the group level. From a practitioner's 
point of view, this is a useful feature because it enables the practitioner not only to 
assess which items have compensating DIF or which items to delete due to DIF, but 
also to estimate the net effect of such an action on DTF. When items with 
significant CDIF are deleted from the final test, the revised DTF can be computed 
for the retained items using Equation 3. 

Several researchers have suggested investigating differential functioning beyond 
the item level using procedures such as SIBTEST (Shealy & Stout, 1993) and the 
random effects model for Mantei-Haenszel differential item functioning (Longford, 
1995; Longford, Holland, & Thayer, 1993). Within the DFIT framework, one starts 
with a definition of DTF and then decomposes DTF into differential functioning at 
the item level (CDIF). Therefore, it is not surprising that the definition of CDIF for 
a given item, shown in Equation 5 (especially the covariance term), includes 
information about correlated DIF between the item in question and other items in 
the test. In practice, it is possible that two items with significant DIF may be quite 
similar, because the stems for the two items are very similarly phrased or because 
the two items tap very similar content. In such cases, DIF in the two items may 
have a nonzero correlation, which, in turn, will influence differential functioning at 
the test level. 

NCDIE The purpose of this section is to define a noncompensatory DIF 
(NCDIF). If we assume that all items in the test, other than item i, are completely 
free of DIE then it must be true that dj •ffi 0 for all j ~ i. Then, Equation 5 can be 
rewritten as 

2 .  t_ 2 NCDIFi = tr d, lad,, (8) 

which does not include information about DIF from other items in the test. In the 
unidimensional case, Raju et al. (1995) showed how this definition of NCDIF 
relates to Lord's (1980) chi-square and the exact unsigned area measure (Raju, 
1988). The CDIF and NCDIF terminology is introduced here for the explicit 
purpose of distinguishing between compensatory DIF and noncompensatory DIE 
Among other things, we hope that this distinction clearly articulates the fact that 
many of the currently popular DIF indexes implicitly assume that items other than 
the one item under consideration are DIF free. 

Significance Tests for DTF and NCDIF 

Prior to describing some statistical tests for assessing the significance of DTF, 
CDIF, and NCD1F, it should be noted that, up to this point, definitions of these 
terms have been expressed in terms of person parameters (0) and item parameters 
(a and b). However, only estimates of 0, a, and b (denoted as I~, 4, and /~, 
.respectively) are typically available for the focal and reference groups. Therefore, 
the proposed DTF, CDIF, and NCDIF indexes are to be comp*ated using estimated 
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person and item parameters in practice. Estimates of DTF, CDIF, and NCDIF 
(denoted, respectively, as DTF, CDIF, and NCDIF) indexes will be computed with 
the help of D and di, which are estimates of D and di, respectively, for an examinee. 
That is, 

k 

i=I 

DTF Mean o f b  2 ~2 ^2 = =crb+Pb , 

(9) 

(lO) 

( l l )  

cEIF, = C6v( ?i, b)  + O ,Ob, (]2) 

(13) 

where t;iF and/;iR are item probabilities, computed with estimated person param- 
eters (0) and estimated item parameters (~ and d). The symbols 02, I ~, and Cfv 
represent estimates of t~ 2, p, and Cov, respectively. 

According to the above definitions, estimates of DTF, CDIF, and NCDIF have 
three kinds of errors: (a) estimation error resulting from the use of 0, ~, and d in 
place of 0, a, and b, respectively; (b) equating/linking error; and (c) the typical 
sampling error resulting from the use of only a sample from a population of 
examinees. We hope that future research will be successful in proposing signifi- 
cance tests that fully account for the errors associated with the estimation and 
linking of person and item parameters. It should be noted, however, that while the 
use of significance tests that do not directly account for the estimation and linking 
errors is not ideal, it is a common practice in the unidimensional case to compute 
standard errors for the person and item parameters, without reflecting the estima- 
tion and linking errors, and then use them in DIF analysis (Lord, 1980; Raju, 1990). 
^ Chi-square test for D'i'F. The chi-square test to be described below assumes that 

D is normally distributed with a mean of pb and a finite standard deviation of crb. 
This assumption certainly needs to be verified in future investigations. The z-score 
for examinee s can be written as 

= 04) 
(r b 

Since z 2 has a chi-square distribution with one degree of freedom (provided z~ is 
standard normal), the sum of z~. 2 across N F examinees in the focal group has a 
chi-square distribution with NF degrees of freedom. Algebraically, this can ,be 

expressed as 

iva- 
N,. E (b, - 

= :, = <15) 
2 

S=I O'D 
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In the present context, the null hypothesis is 

E(DTF) = I ~  = O, (16) 

which implies that P3 must also be zero. It should be noted that Ih5 "* 0 is a 
necessary but not sufficient condition for the validity of Equation 16. Substituting 
Pb - 0 into Equation 15 yields 

htF 
E 

X~F $= 1 = 0 7 )  
2 ' 

which, according to the definition of DT"F for N F examinees (Exluation 3), can be 
expressed as 

NF(DfF) 
X~ = 2 (18) 

cr~ 

Substituting the sample-based estimate of the variance o f / ) ,  Equation 18 can be 
rewritten as 

X~,- I = NF(DTF) 
e2 (19) 

This chi-square test (with Nv - 1 degrees of freedom) may prove useful in practice 
in determining whether an observed (or sample-based) DTF index is significantly 
different from zero. Another statistical test which may prove useful in the present 
context is "V/~F(~b - Pb) / Oh, which, according to the previously stated assump- 
tions for the chi-square test, has a t distribution with N F - 1 degrees of freedom. 
Since the t and chi-square tests are likely to lead to very similar conclusions when 
N F is large, Raju et al. (1995) recommend the chi-square test because of its explicit 
relationship to DTF. 

When an observed D2C'F index is statistically significant, one may begin the 
search for items that may be causing the significant ehi-square. After such items are 
identified and removed from the test, the DI"F index and its chi~square should be 
recomputed with the remaining items. Since the value for C6v(di, D) depends on, 
among other things, the number of items that are still in the test, it is recommended 
that a single item be identified for removal at a time and that the process be 
continued until the ch i - squ~ associated with the revised D f F  index becomes 
nonsignificant. Since item CDIF indexes add up to the total test D~'F index, when a 
given DTF index is statistically significant, i~ms with large, positive CDIF indexes 
should be deleted, one at a time, until the DTF index based on the remaining items 
becomes statistically nonsignificant. All such deleted items will then be labeled 
"DIF" or characterized as having sign~qScant C l e F  indexes. No separate signifi- 
cance test, therefore, is ~ for the CDIF index. 

Chi.sqitare test for NCDIF. In light of the significance test defined above for 
D /F ,  a chi-square significarge test, given that d i is mmar, dly distributed with a 
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t-mite variance, may be similarly defined for the (sample-based) NCI)IF index for 
item i as 

N v (NCDIF~) 
X2~- i = - 2 (20) 

The degrees of freedom for this chi-square test are also equal to Nv - 1. 
An exploratory Monte Carlo examination of the chi-square test for the NCI)IF 

index showed that this index was overly sensitive for large sample sizes (Fleer, 
1993). In the no-DIF condition (i.e., identical true item parameters in the focal and 
reference groups), the percentage of items identified as DIF at the .01 level of 
significance was substantially greater than 1%. Therefore, after several replications 
with the no-DIF condition, Fleer found that a cutoff score of .006 for the NCI)IF 
index resulted in the false identification of approximately 1% of the items as DIF. 
Other Monte Carlo studies on DFIT (Fleer, Raju, & van der Linden, 1995; Oshima, 
Raju, Flowers, & Monaco, 1995) used .006 as a cutoff criterion and showed 
favorable results. Although a comprehensive review of the adequacy of the criterion 
is in order, for this article the cutoff of .006 for the NCDIF index will be used in 
identifying false positives and false negatives. 

Multidimensional Linking 

In the unidimensional case, prior to a DIF analysis, the estimated item param- 
eters for the reference group (for example) are transformed to a scale underlying 
the estimated item parameters for the focal group because the item parameters from 
two subpopulations are only invariant up to a linear transformation (~ rd ,  1980). It 
is also necessary to put the items on a common scale in the multidimensional case. 

For the multidimensional IRT models with the exponent expressed as a'O + b, 
the probability of correct response is not altered by the following transformations: 

a* = (A-t)'a (21) 

b* = b - a'A-l[3 (22) 

0* = A0 + 13 (23) 

where A is an m x m multiplicative linking matrix and I~ is an m × 1 additive 
linking vector for the m-dimensional IRT models. The multiplicative linking matrix 
adjusts variance and covariance differences of ability dimensions for the two 
groups, and the additive linking vector adjusts the location differences. The equa- 
tions above are slightly modified from the multidimensional linking originally 
introduced by Davey (1991). 

The multidimensional linking procedure introduced here is an extension of the 
test characteristic function (TCF) method (Stocking & Lord, 1983). The A an~l 1~ 
are  sought to minimize the difference between two test characteristic functions on 
certain matching points of 0. The function to be minimized (F I) is 

FI = L i~=I (TF - TR)2 (24) 
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for L equally spaced 0 points in the m-dimensional space. For example, the 
two-dimensional test characteristic surfaces can be evaluated at L (e.g., 7 x 7 = 49) 
grid points evenly spaced on the square defined by the corners (-4, -4), (-4, 4), (4, 
-4), and (4, 4). A detailed explanation of this multidimensional linking is given 
elsewhere (Oshima, Davey, & Lee, 1996). 

A further modification of this TCF method was made in accordance with the 
definition of DTF previously described. Instead of equally spaced 0 points, 0 points 
of the entire focal group were used as matching points. The resulting function to be 
minimized (F 2) is 

1 A'F 
F 2  = - r g )  2 . ( 2 5 )  

Notice that the function to be minimized is precisely what DTF is. Therefore, 
what is left from linking defines DTF. For this reason, when the presence of DIF is 
suspected or unknown, it is crucial to employ iterative linking (Candell & Drasgow, 
1988) so that potentially DIF items are excluded from the calculation of the linking 
matrix and vector. 

It is important to distinguish the DIF procedure used in the process of iterative 
linking from the final DIF procedure itself. In iterative linking, the role of the 
intermediate DIF procedure is to identify "large" DIF items so that linking can be 
conducted with no or a minimum number of DIF items. Only after the desirable 
linking is achieved, the DIF/DTF indexes are ready to be interpreted. This point is 
especially relevant for DTF. In the DFIT framework, the initial DTF (i.e., before 
iterative linking) is likely to be nonsignificant, provided that the minimization of F 2 
has been successful. This DTF, however, is not very interpretable, because linking 
coefficients are most likely to be contaminated by the possible presence of DIF 
items. 

Raju and his colleagues recommended the use of NCDIF in selecting items to be 
used for linking. Their rationale is that NCDIF is similar to other existing IRT- 
based DIF indexes for which iterative linking is commonly exercised. Although it is 
also possible to use CDIF in lieu of NCDIF, the use of CDIF for iterative linking 
has not yet been investigated. 

Method 

Design 

Although the DFIT procedure described earlier can be applied to m-dimensional 
data in general, the simplest case (in - 2) is demonstrated in this article. Using a 
compensatory multidimensional two-parameter logistic (M2PL) model (Equation 
1),  40-item, two-dimensional data sets were generated. Factors of interest in this 
study were (a) uniform versus nonuniform DIE (b) unidirectional versus balanced- 
bidirectional DIF, and (c) O distributional differences for the reference group and 
the focal group. Other factors such as the number of DIF items and the magnitude 
of DIF were held constant. In the two-dimensional slructure in which both dimcn- 
sicm are intended to be mcasmcd, items mcama~ both 01 and 02 throughout the 
test to various degrees (i.e., a n m l ~  within-item test). 
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The first factor of interest had two levels: uniform DIF and nonuniform DIF. The 
uniform DIF condition was defined as a difference in the reference group and focal 
group b parameters in Equation !. The nonuniform DIF condition was defined as a 
difference in the a parameter vector (with elements al and a2), with or without a 
difference in the b parameter. It should be noted that there are various combinations to 
create nonuniform DIF situations. Please refer to Swaminathan and Rogers (1990) for 
additional information about uniform and nonuniform DIF in the unidimensional case. 

The second factor consisted of unidirectional and balanced-bidirectional DIF 
conditions. In the unidirectional condition, all DIF items favored the reference 
group. On the other hand, in the balanced-bidirectional condition, one half of the 
DIF items favored the focal group, and the other half of the DIF items favored the 
reference group to the same degree. As previously noted (see Equation 7), two 
items with balanced but opposite DIF will cancel each other out in terms of their 
contribution to DTF at the examinee level; these items will therefore be considered 
free of DIF as far as the CDIF indexes are concerned. The same two items, 
however, may be considered to have significant DIF within the context of NCDIF 
definition. Items representing both unidirectional and balanced-bidirectional DIF 
conditions were included in the current study to assess the sensitivity of the 
proposed statistical tests to these types of DIF. 

The last factor of interest concerned distributional differences of 0s between the 
two groups. In the multidimensional context, a distributional difference can arise 
from differences in the variance-covariance structure of 0s and/or the location of 
0s. There are many possible differences one can generate. However, for the current 
study, only four different cases were used. The first case (Case A) was the situation 
where both groups had 0s drawn from a bivariate normal distribution with zero 
means, unit variances, and p -~ 0. The second case (Case B) is the same as Case A 
but with p = .5. The third case (Case C) is the same as Case B, but with a location 
difference of .5 on 02. In other words, this is the situation where, for both groups, p 
= .5, but the focal group had a lower mean on 02. Recall that 02 is an intended-to- 
be-measured trait. Therefore, this distributional difference alone should not result in 
DIE The last case (Case D) reflects a correlation difference between the two 
groups. The reference group had p = .5, and the focal group had p = .0, both with 
zero means and unit variances. 

The constants for the other factors, such as the number of DIF items and the 
magnitude of DIE were selected to model practical situations. The number of DIF 
items was four on the 40-item test. The constants .3 and .5 were used to create the 
difference on an element of the a parameter vector and the b parameter, respec- 
tively. These constants were added or subtracted, depending on the condition, to or 
from the item parameters for either the focal group or the reference group. 

The .3 difference on an element of the a parameter vector was selected to 
coincide with other DIF studies. For example, Kim and Cohen (1992) had an a 
difference (in a unidimensional IRT setup) of .16 or .32. 

Data Generation 

Item paran~ters were generated to create a test which measures 01 and 02 
throughout the test. The item direction parameter 2 (a) ranges from 0 ° to 90 ° and 
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defines the degree to which each item measures 0~ and 02. In this test, the item 
directions of 0 °, 30 °, 45 °, 60 °, and 90 ° were embedded systematically throughout 
the test. Item parameters are listed in Table i. 

Ability parameters (0~ and 02) were simulated from a random normal distribution 
with a mean of 0 and a standard deviation of 1. Then, a set of correlated 0 was 
generated for some conditions. Correlated 0~ and 02 were simulated by first 
generating two independent, normally distributed pseudorandom variables z, and z2 
and then transforming them to 0, and 02 by weighted linear transformations. The 
weights were the elements of T ' ,  a matrix which satisfies R - T 'T ,  where R is the 
target correlation matrix. The sample size for each group was 1,000. Additional 
details on simulating multidimensional test data can be found in Oshima and Miller 
0992).  

For organizational clarity, DIF items were shifted to the end of the test (Items 
37-40). In addition, for these four items, multidimensional discrimination 3 
(MDISC) and multidimensional item difficulty'* (MID) parameters for the reference 
group were replaced with the average values of the respective parameters (MDISC 
- 1.13, MID - 0) to avoid any unnecessary effect of discrimination and/or difficulty 
of the item on the detection of DIE It has been shown, for example, that DIF items 
with higher discrimination parameters were more likely to be identified as DIF 
items (Oshima & Miller, 1992). Table 2 presents item parameters for the four DIF 
items. 

Two conditions were considered under uniform DIF (Conditions l and 2). In 
Condition 1 (uniform and unidirectional DIF), the item directions for the four DIF 
items were 0 °, 30 °, 60 °, and 90 °. In this condition, the b parameter for all four DIF 
items was lowered by .5 for the focal group, thus making these items harder for the 
focal group. In Condition 2 (uniform and balanced-bidirectional DIF), item direc- 
tions were either 30 ° or 60 ° . Items 37 and 38 favored the reference group, whereas 
Items 39 and 40 favored the focal group to the same degree. A close examination of 
this condition reveals that the reference group item parameters for Items 37 and 38 
were identical to the focal group item parameters for Items 39 and 40; similarly, the 
reference group item parameters for Items 39 and 40 were identical to the focal 
group item parameters for Items 37 and 38. That is, at the item level, Items 37-40 
had DIF, but that DIF had no effect on the DTF index. 

Two conditions were also considered under nonuniform DIF (Conditions 3 and 
4). For nonuniform unidirectional DIF (Condition 3), each of the four items had a 
different pattern of nonuniform DIE while the item directions were held constant at 
45 ° for the reference group. Only in Item 40, both the am and a2 paran~.ers and the 
b parametex were lowered for the focal group. Finally, in Condition 4 (nonuniform 
and balanced-bidirectional DIF), two types of  nonuniform DIF were considered: 
difference in a only, and diffemaces in a and b. Again, as in Condition 2, items 
were arranged so that there was differential functioning only at the item level, but 
not at the test level 

Analysis 

Item parameters for the generated data were calibrated using NOHARM (Fraser, 
1988). In all the conditions in this study, an exploratory analys~ was used in which 
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Table I. True Item Paramet~; s 

Before DIF was Emb~de 4 

Item ~ a I a 2 b 

1 0 1.62 0.00 1.65 
2 30 0.91 0,52 1.59 
3 45 1.01 1.01 -1.60 
4 60 0.42 0.73 0.25 
5 90 0.00 0.69 0.25 
6 0 1.08 0,00 0.14 
7 30 1.02 0.59 0.18 
8 45 1.19 1.19 -0.47 
9 60 0.20 0.35 0.37 
I0 90 0.00 0.85 0.01 
ii 0 1.72 0.00 -1.75 
12 30 0.88 0.51 0.15 
13 45 0.53 0.53 0.39 
14 60 0.27 0.47 -0.34 
15 90 0.00 0.94 0.13 
16 0 1.54 0.00 -1.75 
17 30 0.77 0.44 -0.40 
18 45 0.89 0.89 -0.03 
19 60 0.32 0,56 0.43 
20 90 0.00 0.77 0.81 
21 0 3.52 0.00 -0.69 
22 30 0.63 0.36 0.39 
23 45 0.53 0.53 0.04 
24 60 0.46 0.79 -1.74 
25 90 0.00 0.68 -0.94 
26 0 0.39 0.00 0.37 
27 30 0.35 0.20 0.36 
28 45 0.75 0.75 0.51 
29 60 0.76 1.32 -1.64 
30 90 0.00 0.80 -0.19 
31 0 1.52 0.00 0.17 
32 30 1.22 0.71 0.31 
33 45 0.55 0.55 0.94 
34 60 0.50 0.86 -0.91 
35 90 0.00 3.23 0.11 
36 0 1.09 0.00 -0.23 
37 30 1.26 0.73 1.49 
38 45 0.44 0.44 -0.24 
39 60 0.31 0.53 0.44 
40 90 1.11 1.81 2.31 

Mean 0.69 0.63 0.02 
SD 0.73 0.58 0.92 
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Table 2 

Item Parameters for Generatlna DIF Cond±tions for the Last Four Items 

(a) Uniform DIF 

Condition Reference Group 

Item (~ a a 

Focal Group 

/5 ~ a a h 

Unidlrectional (Con4Lit£on I) 
37 0 1.13 .00 .0 0 1.13 .00 -.5 
38 30 .98 .57 .0 30 .98 .57 -.5 
39 60 .57 .98 .0 60 .57 .98 -.5 
40 90 .00 1.13 .0 90 .00 1.13 -.5 

Balanced-Bidxrectional (ConcLit£on 2) 
37 30 .98 .57 .0 30 .98 .57 -.5 
38 60 .57 .98 .0 60 .57 .98 -.5 
39 30 .98 .57 -.5 30 .98 .57 .0 
40 60 .57 .98 -.5 60 .57 .98 .0 

(b) Non-Uniform DIF 

Condltlon Reference Group Focal Group 

Item ~ a a h ~ a a 

Unidirectlonal (Condition 3) 
37 45 .80 .80 .0 58 .50 .80 .0 

38 45 .80 .80 .0 45 .50 .50 .0 
39 45 .80 .80 .0 69 .50 1.30 .0 
40 45 .80 .80 .0 45 .50 .50 -.5 

Balanced-Bidxrectlonal (Con4Lition 4) 
37 45 .80 .80 .0 45 .50 .50 .0 
38 45 .80 .80 .0 45 .50 .50 -.5 
39 45 .50 .50 .0 45 .80 .80 .0 

40 45 .50 .50 -.5 45 .80 .80 .0 

the user does not specify the pattern matrices of  F (composed of  as for the 40 
items) except that a2 of  Item 1 is set to be zero. This restriction on Item 1 is 
imposed to solve the rotational indeterminacy. In the exploratory analysis, the 
correlation matrix of 0 (called the P matrix) is set to be an identity matrix. 
Regardless of  the true ability distributions of  examinees, P is always an identity 
matrix. However, the correlation of 0 is reflected in the a estimates. In fact, 0 can 
be transformed into any correlation of  0 by the transformation equation (Equation 
23), provided the a estimates and b estimates are also wansfornw.d (Equations 21 
and 22), respectively. For this reason, it does not seem crucial to recover the 
original 0 distributions in DIF studies as long as an appropriate linking is per- 
formed. In theory, any distributional difference of intended-to-be-measured traits 
(location, variance, and covariance) between two groups should be corrected by the 
linking process. 

The linking analysis was conducted using a computer program called IPLINK 
(Lee & Oshima, 1996). This computer program implemented the linking procedure 
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described earlier. A two-stage iterative linking procedure was used. That is, items 
showing a fairly large NCDIF (> .006) were eliminated first, and linking was 
performed again using the remaining items. Using the second-stage linking coeffi- 
cients, all item parameters for the reference group were transformed. 

Finally, the DFIT program was used to calculate DIF and DTF indexes. As 
described earlier, the standard DFIT analysis requires estimated ability parameters. 
As an alternative to using estimated 0s, we propose that simulated 0s be used. In 
other words, 0s randomly sampled from a multivariate standard normal distribution 
can be used. In practice, we can provide a set of 0s as part of the DFIT program. 
This approach is a simplification of calculating DTF as an expectation with respect 
to 0s with a multivariate standard normal distribution. Since the theory used in 
NOHARM also assumes a multivariate standard normal distribution for latent 
traits, the use of this distribution seems justifiable. Incidentally, the current 
NOHARM does not provide 0 estimates. Even when 0 estimates become available, 
the use of simulated 0s included in the DFIT program may still offer an advantage 
over estimated 0s in terms of convenience for practitioners. In the present study, the 
same simulated or predetermined 0s with mean zero, unit variance, and p - 0 were 
used in all conditions. Note that these simulated 0s are independent of the 0s used 
for data generation. 

Results  and Discussion 

As noted earlier, the purpose of this research was to describe and demonstrate 
Raju et al.'s (1995) DFIT indexes in the multidimensional context. It is important 
to keep in mind that a recovery analysis such as the one used in this study involves 
the evaluation of not only the DFIT technique but also the performance of the 
calibration program and the linking procedure. To separate the issue of the perfor- 
mance of the DFIT technique from the performance of the NOHARM calibration 
program and the multidimensional linking procedure, the DFIT analysis was first 
conducted with true item parameters (the true condition) and later repeated with 
estimated item parameters (the estimated condition). The first analysis was consid- 
ered to be an optimal condition for the DFIT technique, because the NOHARM 
calibration errors and subsequent scaling errors were removed from influencing the 
DFIT indexes. On the other hand, the latter analysis, which can be used in practice, 
reflected the calibration and scaling errors. Reported in Table 3 are the results from 
all the conditions studied (single replication for each condition), including the true 
(indicated in boldface) and estimated conditions. 

DFIT Analysis With True Item Parameters ("True" Conditions) 

In all conditions, the CDIF and NCDIF indexes for the non-DIF items (Items 
1-36) were .000, as expected (not shown in Table 3). As shown in Table 3, in the 
uniform and unidirectional condition (Condition 1), the CDIF indexes were .~)39, 
.040, .040, and .040 for the four DIF items (Items 37-40), respectively, and the 
DTF index was .159, with a statistically significant chi-square. When Items 40, 39, 
37, and 38 were eliminated successively, the DTF index was no longer signifw.ant. 
The NCDIF index of .010 was the same for all four DIF items and was statistically 
significant. In the u n i f ~  and balanced-bidirectional condition (Condition 2), the 
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Table 3 CDIF and NCDIF Indlces With True and Estlmated Item Parameters Under 

pour Dlffezent 0 Dlstrlbutlons (A. B. C. and D). 

(a) Unlform DIF 

CDIF NCDIF 

True Estlmated True Estlmated 

Case Case 
A B C D A B C D 

U~ldlzect/onal 
(Condltlon i) 

FP Rate 
0/36 0/36 0/36 0/36 0/36 

CDIF for Items 37-40 NCDIF for Items 37-40 
Item 37 .039 .034 .020 .023 .036 .010 .013 .010 .013 .013 

Item 38 .040 .029 .016 .017 .031 .010 .009 .007 .008 .010 
Item 39 .O40 .034 .020 .018 .034 .O10 .012 .010 .008 .012 

Item 40 .040 .020 .014 .013 .020 .010 .005 .006 .005 .005 

DTF .159 .099 .043 .044 .106 

Deleted 40 37 37 37 39 

Items 39 38 39 38 38 
37 39 37 

3 8  

Balanced-Bldl~ectlonal 
(Condltlon 2) 

FP Rate 
0/36 0/36 0/36 0/36 2/36 

CDIF fo[ Items 37-40 NCDIF fo[ Items 37-40 
Item 37 .OO0 -.001 .009 .000 -.001 .O10 .012 .010 .011 .013 

Item 38 .O00 .003 .009 .002 .002 .010 .008 .009 .008 .009 
Item 39 .000 .008 -.007 .001 .002 .010 .009 .006 .007 .008 
Item 40 .0OO .011 -.007 .005 .003 .010 .016 .011 .015 .016 

DTF .000 .035 .017 .01Z .029 

Deleted none none 37 
Items 

CDIF index was .000 for all four DIF items, with a DTF of .000. As expected, the 
NCDIF indexes were all equal to .010 and were statistically significant. 

In the nonuniform DIF conditions (Conditions 3 and 4), a similar trend was 
observed. The effect of  a parameter vector differences was evident in Condition 3. 
The difference in both a I and a 2 parameters produced larger CDIF and NCDIF 
indexes than the difference only in a~ parameters. When aj and a2 parameters were 
both different but in opposite directions (Item 39), the CDIF index was about the 
same as, and the NCDIF index was larger than, when the a, and a 2 parameters were 
both different in the same direction (Item 38). The largest CDIF and NCDIF 
indexes were observed when a,, ah, and b parameters were all different across 
groups (Item 40). Only Item 40 needed to be eliminated to achieve nonsignificant 
DTF. The NCDIF indexes for Items 39 and 40 were statistically significant. The 
result that some nonuniform DIF items were not identified as DIF items should be 
interpreted with caution. As is the case in any DIF analysis, the detection of 
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(b) Non-Unlfo[m DIF 

CDIF NCDIF 

Tl~aa Estlmated True Estimated 

Case Case 
A B C D A B C D 

Unldlrectlo~al 
(Condltlon 3) 

CDIF fo[ Items 37-40 

Item 37 .012 .005 .005 .001 .027 

Item 38 .012 .004 .006 .007 .023 

Item 39 .014 .009 -.001 -.001 .016 

Item 40 .024 .015 .006 .016 .025 

DTF .062 .026 .010 .023 ,094 

Deleted 40 40 none 40 none 

Items 

FP Rate 
0 / 3 6  0/3~ u/36 U/36 U136 

NCDIF fo[ Itemb 37-4G 

.003 .002 .007 .004 .013 

.005 .002 .006 ,006 .007 

.011 .008 .006 ,006 .010 

.010 .014 .020 ,015 .022 

Balanced-Bldlrectlonal 

(Condltion 4) 
FP Rate 

0/36 1/3£ ~/3G 0/36 0/36 

CDIF for Items 37-40 NCDIF for Items 37-40 

Item 37 .000 -,601 -.002 .008 ~.010 .005 .004 .008 .010 .005 

Item 38 .000 -,008 -.004 -.001 -.007 .018 .017 .016 .012 .017 

Item 39 .000 ,006 .003 -.005 .014 .005 .008 .007 .005 .009 

Item 40 .000 ,010 .006 .001 .015 .018 .024 .022 .018 .028 

D T F  . 0 0 0  . 0 2 8  . 0 1 3  . 0 2 1  . 0 3 5  

Deleted n o n e  27 none 40 none 

Items 

Note. 
Case A (D, = .0, D, = .0), Case B (0, = .5, O, = .5), Case C (~ = .5, |;~ = .5, 

and locatlon dlfference of .5 on 0 ), and Case D (~ = .0, O~ = .5) 
False posltIve rate fox NCDIF, i.e., the number of items wlth NCDIF > .006 

for Items 1-36. 
Items to be deleted to achleve non-slgnlflcant DTF. 

DIF/DTF depends on the magnitude of DIF. With a different (i.e., larger) magnitude 
of DIF and/or different item parameter characteristics (i.e., either more difficult or 
easy items and/or more discriminating items), results are likely to change. In the 
nonuniform and balanced-bidirectional condition (Condition 4), the DTF index was 
zero, and two of the four items (Items 38 and 40) had statistically significant 
NCDIF indexes; the NCDIF indexes for the remaining two items (Items 37 and'39) 
barely missed being significant. 

It should be noted that the simulated (as opposed to estimated) Os were used as 
ability parameters for calculating the DFIT indexes for the true condition described 
above. The very same set of 0s was also used in the subsequent DFIT analysis with 
estimated item parameters. 
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DFIT Analysis With Estimated Item Parameters ("Estimated" Conditions) 

Results from estimated item parameters are also shown in Table 3, next to the 
results for the true parameters. The four different cases of 0 distributions are 
labeled as A, B, C, and D. 

In the uniform and unidirectional condition (Condition 1) across the A-D cases, 
2 to 3 out of 4 possible CDIF items were identified. There were no false positives 
(FPs) for CDIF. This suggests that the test is slightly conservative. It could be due 
to the linking method employed in this study. NCDIF performed fairly well. The 
number of FPs was zero for all of Cases A-D. The true positive (TP) rate was 3/4 
(75%) in Cases A-D using the .006 criterion. It is difficult to determine what 
percentage of TP is "good." In the unidimensional case, a study reported a TP rate 
of 47-62% when 10% of the items were DIF items using the area measures 
(Oshima & Miller, 1992). All of the last four items showed some degree of NCDIE 
although some items did not reach significance. 

For the uniform and balanced-bidirectional condition (Condition 2), no CDIF 
item was identified, as expected, except for Case B. Even in Case B, only one item 
was erroneously identified as CDIE NCDIF showed similar results for Condition l, 
except that 2 out of the 36 non-DIF items were identified as having significant 
NCDIF in Case D. 

For the nonuniform unidirectional condition (Condition 3), Item 40, which was 
the only CDIF item according to the analysis with true parameters, was slightly 
underidentified as CDIE However, again, the FP rate for CDIF was zero. For the 
two items that had significant NCDIF in the true condition (Items 39 and 40), most 
of them were identified as having significant NCDIF, or, if not, they were close to 
the cutoff of .006. 

Finally, for the nonuniform balanced-bidirectional condition (Condition 4), 
again, there was a slight (one item at most) overidentification of CDIF. The TP rate 
for NCDIF ranged from 75% to 100%, with no FPs in most cases. 

In general, the agreement between the true and estimated conditions was fairly 
close in all the conditions. It is interesting to note that after the first-stage linking, 
DTF in all conditions was nonsignificant in this study, suggesting that IPLINK 
successfully minimized DTF. After the second-stage linking, on the other hand, 
significant DTF emerged when expected. These results confirm our belief that the 
iterative linking is a necessary step in the DFIT framework. 

The most interesting finding is that the agreement between the true and estimated 
conditions did not deteriorate as the distributional differences of 0s were introduced 
(Cases A-D). As mentioned earlier, linking should take care of distributional 
differences. In other words, the comparison of Cases A-D is an evaluation of the 
linking procedure, not an evaluation of DFIT. As shown under the true condition, if 
there is no linking error (and also no calibration error), DFIT performs as expected. 

The DFIT procedure did distinguish between (a) a situation in which there is DIF 
but the 0 distributions are the same for the two groups and (b) a situation in which 
there is no DIF but the groups have different 0 distributions. To investigate the 
latter situation (i.e., the null condition), data were simulated with identical item 
parameters (thus no DIF) but different distributions (p = .5 for both groups, but the 
mean of 02 was higher for one group by .5). The results of this investigation 
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showed no FPs for CDIF (i.e., nonsignificant DTF) and no FPs for NCDIF. In fact, 
the highest NCDIF index was .001, with most of the items having an NCDIF index 
of .000. 

A cautious interpretation is necessary for Table 3, especially for Case D. The 
results are based on only one replication for the purpose of demonstration. Our 
investigations in the area of linking and DFIT suggest that linking in the presence 
of differences in correlation can be quite difficult as opposed to linking in the 
presence of mean and/or variance differences. Although Case D showed reasonable 
accuracy for this particular case, it would be safe to recommend the use of the 
DFIT procedure when two groups have similar correlations. 

Conclusions 

This article first described the theoretical framework for investigating DIF and 
DTF using the DFIT procedure with intentionally m-dimensional data. Then, it was 
empirically shown that the DIF and DTF embedded in the intentionally two- 
dimensional test were recovered reasonably well under various distributional differ- 
ences of 0s after multidimensional linking was applied to put the two sets of item 
parameters on a common scale. There are two areas for future investigations to 
enhance the performance of the DFIT procedure in the multidimensional context. 
The first is the area of multidimensional calibration and multidimensional linking. 
The second is, of course, the DFIT procedure itself. 

Concerning the first area, the recovery of item parameters by NOHARM or other 
multidimensional calibration programs needs to be investigated. We used a sample 
size of !,000 and a test of 40 items. Further research can elaborate on the issue of 
the stability of NOHARM calibrations as a function of sample size and the number 
of items in a test. The impact of the type of linking on DFIT needs to be 
investigated. As described earlier, there is a close relationship between linking and 
DFIT. A newly developed program, IPLINK, can link any number of dimensions 
with different types of linking algorithms. An evaluation of IPLINK is currently 
underway. 

Concerning the DFIT procedure itself, the role of estimated ability parameters in 
DFIT needs to be investigated. A new IRT calibration program, soon to be commer- 
cially available, estimates person and item parameters for multidimensional and 
unidimensional data with either dichotomous or polytomous scoring (E. Muraki, 
personal communication, April 10, 1996). 

The major challenge of the application of the DFIT procedure appears to be the 
issue of hypothesis testing in relation to sample size and alternative approaches to 
interpret the magnitude of DIF and DTF. While the results from the proposed 
significance tests and/or empirically determined cutoff levels appear to be promis- 
ing, there is still a need for further research on the distribution of D, which is 
assumed to be normal, and on the empirically determined cutoff level (.006) used 
with the DTF and NCDIF indexes. Currently, a study is being conducted to 
investigate the adequacy of the .006 cutoff level under various sample sizes, 
numbers of parameters, and linking procedures. There is also a need for signifi- 
cance tests which take into account the estimation and linking errors associated 
with t~, ~, mad /~. In addition, further study on variables that impact the DFIT 
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indexes is required. The influence of sample size (smaller than the one used in this 
study), relative amounts of DIF in items (e.g., minimum required for detection), 
number and mix (unidirectional and bidirectional) of DIF items, different test 
lengths, and different numbers of ab!lity dimensions should be systematically 
investigated. This study used only one replication to demonstrate the applicability 
of the DFIT framework within the two-dimensional IRT context. Future research 
should include additional replications to assess Type I and Type II error rates. 

Obviously, there is need for further research with respect to the issue of DIF with 
multidimensional data sets. This article has demonstrated a possible starting point 
for this challenging but potentially very useful area of research. The generalizabil- 
ity of our results is limited to the multidimensional structure and items parameters 
used in this study. 
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Notes 

~Th¢ exponent of the multidimensional IRT model is commonly expressed as a '0  + d or 
a ' (0 - b), where d = - a ' b .  The In'st parameterization is used in this article. However, the 
notation d was replaced with b to avoid the confusion with another d repeatedly used as a 
DIF measure in the DFIT framework. 

2In the M2PL model, item directions (~t~t) determine the weighted composite of traits 
measured by an item. The angle can be determined using the direction cosines given by 

aik 
cos ff~ik = ~ ' 

where a~ is the kth element of the vector a~. In the two-dimensional space, if an item 
measures only 01, then aii  is lY'; if an item measures only 02, then ctit is 90*. a~, can be any 
value from 00 to 90*, depending on the degree to which an item measures the two traits. 
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3Reckase and McKinley (1991)defined MDISC as 

MDISC t = 

4Reckase (1985) defined MID as 

bi 
MID, = 

MDISC i" 
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