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he purpose of this module is to T illustrate how test practitioners 
and researchers can apply multidimen- 
sional item response theory (MIRT) to 
understand better what their tests are 
measuring, how accurately the differ- 
ent composites of ability are being as- 
sessed, and how this information can 
be cycled back into the test develop- 
ment process. MIRT is used to model 
the relationship between two or more 
unobservable variables, conceptualized 
as constructs or dimensions, and the 
probability of the examinee correctly 
answering any particular test item. 
Conversely, unidimensional item re- 

sponse theory is used to model the rela- 
tionship between one unobserved con- 
struct or dimension and the probability 
of the examinee correctly responding to 
any particular test item. That is, we 
present the multidimensional analogue 
to unidimensional item response theory 
(IRT), extending and expanding the 
Educat ional  Measurement:  Issues a n d  
Practice module presented by Harris 
(1989 Module 7). Note, however, that 
many unidimensional concepts become 
increasingly complex as one considers 
multiple dimensions. For example, 
the unidimensional item characteristic 
curve becomes an item response surface 
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in two dimensions. One of our goals 
with this mod-ule is to guide the 
reader through this transition. 

The module is divided into four sec- 
tions. In the first section we discuss di- 
mensionality and present methods used 
to verify that meaningful, replicable di- 
mensions are, in fact, being assessed on 
a particular test. In the second section 
we develop one multidimensional item 
response theory model and show how it 
relates to the two-parameter unidimen- 
sional IRT model. In the third section we 
illustrate how to use the computer pro- 
gram NOHARM for MIRT item param- 
eter calibration and how to graphically 
represent item characteristics in a multi- 
dimensional space. In the fourth section 
we present future directions for MIRT 
research. Throughout the module con- 
cepts are illustrated using ninth-grade 
mathematics achievement test data 
from an examination administered in 
the Canadian province of Alberta. 
Although MIRT can be used to model 
many dimensions, to simplify the illus- 
trations in this module, we will only 
consider two-dimensional data using 
dichotomously scored items. 

At the outset, though, some words of 
caution are in order. Although multi- 
dimensional statistical and graphical re- 
sults may appear to present evidence 
of analytic rigor, they have little utility 
unless they can help the practitioner 
and researcher better understand what 
the test scores represent. MIRT analy- 
ses should not only provide validity evi- 
dence but also insight that can be cycled 
back into the test development process 
(Ackerman, 1994,1996). Too oftenpsy- 
chometric analyses are solelyquantita- 
tive in nature and focus primarily on 
examinees’ correct responses, ignoring 
the actual test content and cognitive pro- 
cesses required by examinees to solve 
items on the test. It is our conviction 
that psychometric analyses should al- 
ways be guided by substantive hypo- 
theses, analyses, and interpretations. 
Moreover, whenever quantitative analy- 
ses are conducted based on substantive 
considerations, they should be confir- 
matory in nature and motivated by a 
thorough review of the items, keeping 
in mind what the test was designed to 
measure. This approach is essential for 
unidimensional and multidimensional 
analyses, and it is the approach taken in 
this moduIe. Finally, there is an axiom 
that the reader must attend to: Working 
with real data is never easy and rarely are 
the interpretations straightforward. As a 

result, a complete test analysis should be 
viewed as an iterative craft, not just a 
straightforward application of measure- 
ment principles and formulas. 

Assessing Dimensionality 
Overview 
Many educational and psychological 
tests are inherently multidimensional, 
meaning these tests measure two or 
more constructs or dimensions.’ A con- 
struct is a theoretical representation of 
the underlying trait, concept, attribute, 
process, and/or structure that the test is 
designed to measure (Messick, 1989). 
The items on a factorially simple test 
measure one underlying dimension 
(McDonald, 1999). For example, one 
might believe that a mathematics test is 
measuring one identifiable construct- 
algebra. However, the dimensional struc- 
ture of most real testing data is much 
more complex. The items on a factorial& 
complex test measure two or more un- 
derlying dimensions (McDonald, 1999). 
For example, one might suspect a math- 
ematics test is measuring algebra and 
geometry. In this case, a subset of test 
items with algebra content might be con- 
sidered a measure of the first dimension, 
whereas the remaining items with geom- 
etry content might be considered a 
measure of the second dimension. 

In this module, we focus on factori- 
ally complex tests where some item re- 
sponses are influenced by two underlying 
dimensions. When all items lie along the 
two-dimensional coordinate axes (see 
section “Estimating and Representing 
MIRT Item Parameters”) the test dis- 
plays simple structure2 (Stout, Habing, 
Douglas, Kim, Roussos, & Zhang, 1996). 
Items can also lie in a narrow sector 
around the two-dimensional coordinate 
axes. In this case, the test displays ap- 
proximate simple structure. When 
items lie throughout the two-dimen- 
sional latent space (Le., items measure 
a range of skills in the 8& composite) 
the test displays complex structure. 
Traditionally, most dimensionality 
analyses have focused on identifyng sim- 
ple structure because it is easy to inter- 
pret; in fact, all of the dimensionality 
analyses discussed in this module are 
designed to assess testing data that ap- 
proximate simple structure. 

Recently, Zhang and Stout (1999) 
noted that “a certain pattern of sepa- 
rated clusters of items about the test 
composite should typically result from 
the categorical nature of many test spec- 

ifications” (p. 214). This statement sug- 
gests that dimensionality and MIRT 
analyses should be supported by, and 
perhaps even preempted with, substan- 
tive judgment. Specifically, a thorough 
analysis of the content areas and cogni- 
tive skills needed to successfully respond 
to each item should be conducted. It 
might be helpful to conduct this sub- 
stantive analysis by referring to the test 
specifications with the aid of specialists 
who have extensive knowledge of the 
content and the examinees’ cognitive 
skills. If subsets of items measure dif- 
ferent content areas and/or cognitive 
skills, then these items have the poten- 
tial to represent distinct dimensions. 
Hence, the first step in any MIRT analy- 
sis is to determine whether the data are 
indeed multidimensional. 

Traditionally, linear factor analysis, 
using tetrachoric correlations (polycho- 
ric correlations in the case of polyto- 
mous data), has been used to assess the 
dimensionality of test data. However, 
there are problems with this approach. 
For example, the relationship between 
item performance and the underlying 
latent ability is often nonlinear (Hattie, 
1984). Nonlinearity can result in a mis- 
match between the model and the data. 
Dimensionality can also be confounded 
with item difficulty, such that the fac- 
tors represent items with comparable 
difficulty levels as opposed to items that 
measure distinct dimensions. Moreover, 
the mathematics underlying factor analy- 
sis requires the matrix of tetrachoric cor- 
relations to be positive semidefinite, a 
condition that is not always satisfied with 
real data. Finally, there is a no standard 
approach for determining the number 
of meaningful factors (Mislevy, 1986). 

Many other empirical methods have 
been proposed to investigate the dimen- 
sionality of test data (e.g., Hambleton & 
Rovinelli, 1986; Hattie, 1984, 1985), in- 
cluding, more recently, the develop- 
ment of several nonparametric tests 
based on Stout‘s (1987) theory of essen- 
tial unidimensionality. Essential di- 
mensionality is based on the assumption 
that there is only one dominant latent 
ability that influences examinees’ re- 
sponses to items (Hattie, Krakowski, 
Rogers, & Swaminathan, 1996; Nanda- 
kumar, 1991; Nandakumar & Stout, 
1993; Stout et  al., 1996; Zhang & Stout, 
1999). Unfortunately, most dimension- 
ality analyses are exploratory in nature 
and many of these procedures produce 
results that contradict substantive di- 
mensionality hypotheses. 
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As we advocated previously, substan- 
tive judgment should guide the assess- 
ment of dimensionality in at least three 
different ways. First, test specgcations 
can guide the assessment of dimension- 
ality. Test specifications outline the 
achievement domain and help test de- 
velopers obtain a representative sample 
of items from this domain. The specifica- 
tions also guide item writing and help 
structure the final form of the test based 
on the content and cognitive domain that 
the test is designed to measure. Second, 
a content analysis can guide the assess- 
ment of dimensionality. For example, test 
development specialists can review items 
and identify dimensions based on item 
content. A content analysis is guided 
by the professional experience of the 
reviewers. Two variations of content re- 
view can be used: (a) specialists may use 
their experience and judgment to iden- 
tify dimensions during an item review 
or (b) content-based judgments can be 
found in the educational and psycholog- 
ical literature to guide interpretation 
using well known tests. Third,psycholog- 
ical analyses can guide dimensionality 
assessment when the hypothesized item 
structure is formulated from a psycholo- 
gical perspective. For example, a cogni- 
tive task analysis could be used to iden- 
tify skills that characterize mathematics 
performance (e.g., Gallagher, 1998; Gal- 
lagher, De Lisi, Holst, McGillcuddy- 
De Lisi, Morely, and Cahalan, 2000). 
These cognitive skills could be identified 
and operationalized using test items to 
inform a dimensionality assessment. 

To illustrate a systematic approach 
for investigating the dimensionality of 
test data we used the results from the 
1996 ninth-grade mathematics achieve- 
ment test administered in the Canadian 
province of Alberta. For the purposes 
of this instructional module, a 35-item 
multiple-choice test was analyzed using 
data from 6,000 examinees randomly se- 
lected from the original database. When 
one has access to large databases in ac- 
tual test analyses, it is often prudent to 
cross-validate the results of dimension- 
ality analyses using different subsets of 
data (e.g., different samples from the 
same population). 

In our example, a substantive analy- 
sis of the item content was conducted, 
as we previously advocated. Two con- 
tent reviewers, who were familiar with 
the content area, had several years of 
math teaching experience, and had par- 
ticipated in the process of standardized 
test development, evaluated the 35-item 

mathematics test. These reviewers con- 
cluded that two distinct abilities were 
being measured by the test: general 
mathematics ability and spatial ability. 
Furthermore, the reviewers believed that 
all of the items were measuring general 
mathematics abilitywhile only six items 
were measuring spatial ability. Conse- 
quently, the data were sorted such that 
the first six items in the 35-item test were 
hypothesized to measure both spatial 
ability and general mathematics ability 
whereas the remaining 29 items were 
hypothesized to measure only general 
mathematical ability. A discussion and 
illustration of some of the more recent 
dimensionality tests used to evaluate 
these substantive hypotheses are pre- 
sented next. 

Methods for Assessing Dimensionality 
When using any of the methods in this 
section to assess dimensionality, one 
must remember that these procedures 
are only tools. Whereas promising results 
for these procedures have been found in 
simulation studies, relatively few pub- 
lished studies have supported the proce- 
dures using actual test data. Moreover, 
the dimensionality analyses conducted 
for the purpose of this module did not 
always provide strong support for the 
hypothesized underlying structure. The 
reader should note that dimensionality 
assessment is a large and encompassing 
area in psychometric research. In fact, a 
separate instructional module could be 
devoted to this topic alone. Our intention 
is not to review the vast number of pro- 
cedures available for dimensionality 
analyses but only to survey a small num- 
ber of the more promising techniques. 
Our goal is to describe these procedures 
so the reader has a conceptual under- 
standing of how theywork. The reader is 
referred to the original references for a 
more mathematical and theoretical ac- 
count. In this module, we describe three 
popular methods that can be used to as- 
sess dimensionality: hierarchical cluster 
analysis, DETECT, and DIMTEST. Hier- 
archical cluster analysis and DETECT 
can aid practitioners and researchers in 
assessing the dimensionality of test data 
by employing statistical techniques that 
may be helpful in forming sets of mutu- 
ally exclusive items. Once this informa- 
tion is gathered, the computer program 
DIMTEST can be used to conduct a sta- 
tistical test to determine if the groups of 
items are distinct dimensions. The soft- 
ware to conduct these analyses can be 

obtained from Assessment Systems Cor- 
poration (m,as ses s . com) .  In describ- 
ing these procedures, we are merely 
reinforcing the importance of evaluat- 
ing the dimensionality of the test data 
prior to performing multidimensional 
IRT analyses. 

Hierarchical Cluster Analysis. 
Roussos (1992) developed two computer 
programs, CCPROX and HCA, which are 
used in conjunction with one another to 
conduct hierarchical agglomerative clus- 
ter analysis. This procedure is used to 
cluster items into progressively larger 
groups deemed to be dimensionally ho- 
mogeneous starting with each item con- 
stituting its own cluster and concluding 
with all items in one cluster. The pro- 
gram can be run with 120 dichotomously 
scored items and with no restriction on 
the number of examinees. Prior to con- 
ducting a cluster analysis, a measure of 
proximity between all possible pairs of 
items must be found. CCPROX allows 
the user to choose from several differ- 
ent measures of proximity, one of which 
is the estimated conditional covariance 
between pairs of items, conditioning on 
an examinee’s score using the remaining 
items (Douglas, Kim, Roussos, Stout, & 
Zhang, 1999). In simulation studies, this 
measure of proximitywas demonstrated 
to be sensitive to multidimensionality 
(Douglas et al., 1999; Hartz, Roussos, & 
Stout, 2000) and was the measure used 
in our example. 

The proximity matrix serves as input 
to the program HCA that will subse- 
quently form the various item clusters. 
At the start of the cluster analysis proce- 
dure, each item forms its own cluster. 
The algorithm completesk - 1 iterations 
for a k-item test and at each iteration of 
the algorithm the two clusters that are 
closest in proximity are joined together. 
In the final stage of the HCA algorithm, 
all items are combined forming a single 
cluster. Within the HCA program there 
are many options for determining the 
proximity of clusters. Results from simu- 
lation studies suggest that using the un- 
weighted pair group method of averages 
(UPGMA) for proximity produces the 
most accurate classification of items 
when approximate simple structure ex- 
ists (Douglas et  al., 1999) and was the 
approach used in this example. It is pos- 
sible for more than one pair of clusters 
to be closest in proximity. If this hap- 
pens, one can combine the first or last 
pair. Because this decision is arbitrary, 
Roussos (1992) suggested that the pro- 
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gram be run twice, employing each of the 
tie-breaking mechanisms to ensure that 
the results are not affected. 

Hierarchical cluster analysis can aid 
the practitioner and researcher who sus- 
pects multidimensionality but is unsure 
of the underlying structure. However, 
this type of analysis always results in a set 
of distinct clusters, regardless of whether 
or not the data are multidimensional. 
Therefore substantive judgment should 
be used when interpreting the output. 
Items are never removed from a cluster 
once it is formed. Furthermore, the so- 
lution for each successive iteration of 
the algorithm depends on the previous 
solution, hence the solution attained at 
one level or more may not be optimal. 

This possible outcome may help ex- 
plain the solution we found using the 
actual test data. I n  our example, Items 1 
through 6 were thought to measure the 
spatial ability construct. Five of these 
items tended to cluster together at sev- 
eral different levels. However, they never 
formed a distinct cluster of their own. For 
example, Item 1 did not join a cluster 
until Level 12, and the cluster it joined 
contained Item 5. However, Item 5 pre- 
viouslyformed a clusterwith Item 16 at 
Level 5, which was not expected. In ad- 
dition, Items 2,3, and 4 formed a cluster 
at Level 18 of the analyses and remained 
a distinct cluster until Level 30; however, 
in Level 30, these items were joined with 
a cluster consisting of items that were 
not suspected of measuring the spatial 
ability construct. Likewise, the cluster 
that contained Items 1 and 5 joined items 
not suspected of measuring spatial abil- 
ity at Level 27. Item 6 appeared to be an 
anomaly, standing alone until Level 24 
and never joining the cluster of items 
suspected of measuring the spatial abil- 
ity construct. 

DETECT DETECT is an explora- 
tory nonparametric dimensionality as- 
sessment procedure that estimates the 
number of dominant dimensions pres- 
ent in a data set and the magnitude of 
the departure from unidimensional- 
ity. DETECT also identifies the domi- 
nant dimension measured by each item 
(Roussos, Reese, &Harris, 1997). It can 
be run with 120 dichotomously scored 
items with up to 6,000 examinees. This 
procedure produces mutually exclusive, 
dimensionally homogeneous clusters of 
items. The user specifies the maximum 
number of dimensions. Because the clus- 
ters of items are mutually exclusive, 
this procedure is most useful when a 

researcher suspects approximate sim- 
ple structure. Although the procedure 
can still be informative when simple 
structure fails to hold, different clusters 
of items identified by the procedure in 
this case may actually be quite homoge- 
neous (Zhang & Stout, 1999). 

The main objective of DETECT is to 
identify clusters that maximizes the 
value of the DETECT index. This index 
represents the magnitude of departure 
from unidimensionality (Douglas et al., 
1999). Homogeneous clusters of items 
that are as distinct as possible are found 
using a genetic algorithm. The DETECT 
index is created by computing all item 
covariances, conditioning on exami- 
nees’ scores using the remaining items 
(Zhang & Stout, 1999). When the data 
are unidimensional, clusters of items 
will be found that are not particularly 
homogeneous. In this case, the condi- 
tional covariance will be positive for 
some pairs of items and negative for 
other pairs of items resulting in a 
DETECT index that is near zero. If ,  
however, the underlying structure of the 
data is multidimensional, clusters of 
items will be found that have positive 
within-cluster conditional covariances 
and negative between-cluster condi- 
tional co- variances, resulting in a large 
DETECT index. 

Based on results from simulation stud- 
ies, Kim (1994) suggested that when the 
DETECT index is less than 0.10, the 
data can be considered unidimensional; 
an index between 0.10 and 0.50 can be 
considered a weak amount of dimen- 
sionality; an index between 0.51 and 1.00 
can be considered a moderate amount of 
dimensionality; and an index greater 
than 1.00 can be considered a strong 
amount of dimensionality. Using 
DETECT on the data considered in this 
module and requesting two dimensions 
resulted in a DETECT index of 0.13, 
signaling a relatively weak amount of 
multidimensionality. Similar to the 
results obtained using HCA, one cluster 
consisted of Items 2, 3, and 4. Unlike 
the results obtained using HCA, this 
cluster also included Item 6, an item 
suspected of being dimensionally com- 
parable to Items 1 through 5. Once 
again, Items 1 through 6 never formed a 
distinct group and Items 1 and 5 clus- 
tered with items that were not sus- 
pected of measuring the spatial ability 
construct. 

DETECT also provides the user with 
an index, r, representing how well the 
underlying structure of the data approx- 

imates simple structure. Values of r that 
are greater than 0.80 suggest that ap- 
proximate simple structure of the data 
holds. For the data considered in this 
module r = 0.46, suggesting that approx- 
imate simple structure does not hold as 
we originally predicted. 

DIMTEST. One of the most promis- 
ing dimensionality analyses available to 
practitioners and researchers is the 
latest version of DIMTEST (Froelich, 
2000; Froelich & Habing, 2001; Stout, 
Froelich, & Gao, 2001). DIMTEST is a 
nonparametric statistical procedure that 
conducts a hypothesis test to assess the 
presence of multidimensionality. Similar 
to the previous procedures described, 
DIMTEST assesses the relationship be- 
tween subsets of items based on con- 
ditional item covariances. However, 
unlike previous procedures described, 
DIMTEST allows the user to conduct 
confirmatory analyses. It can be run with 
120 dichotomously scored items with up 
to 6,000 examinees. The most recent ver- 
sion of DIMTEST only requires the user 
to select subsets of test items that mea- 
sure the same dominant dimension. 
These subsets of items can be identified 
using any dimensionality assessment 
such as substantive judgment, hierar- 
chical cluster analysis, or DETECT. 

The test statistic, T, calculated by 
DIMTEST represents the degree of di- 
mensional distinctiveness of two clus- 
ters of items. T is distributed normally 
with an expected value of zero. Based 
upon the substantive a priori hypothesis 
of the spatial and general math dimen- 
sions, DIMTEST was used to determine 
whether Items 1 to 6 were dimension- 
ally distinct from the remaining items. 
The resulting T statistic estimated by 
DIMTESTwas 2.69 ( p  = .004), suggest- 
ing the spatial items are dimensionality 
distinct from the remaining items on 
the mathematics test. 

In summary, the results from 
DIMTEST suggest that the spatial items 
identified by the content reviewers mea- 
sure a distinct dimension when com- 
pared with the remaining items on the 
mathematics test. However, the results 
from DETECT indicate that the spatial 
items only signal a weak amount of di- 
mensionality due, perhaps, to the inclu- 
sion of Items 1 and 5 that were not found 
to cluster with the remaining spatial 
items in the hierarchical cluster analy- 
sis. Clearly, these three methods offer 
different lenses from which to view di- 
mensionality and, typical of most multi- 
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method studies, the results from these 
procedures vary in their ability to dis- 
cern the signal of the valid skills from 
construct irrelevant noise leaving the 
researcher to resolve the different re- 
sults. It is important to remember that 
these three procedures were designed 
to assess approximate simple structure. 
The results from the substantive re- 
views and the graphical representa- 
tions of the six spatial items, presented 
in the section “Estimating and Repre- 
senting MIRT Item Parameters,” sug- 
gest that our data have a more complex 
s true ture. 

Introduction to Multidimensional 
Item Response Theory 
Overview 
The main focus of this module is on 
the two-parameter compensatory MIRT 
model because it has been extensively 
developed, studied, and applied to prac- 
tical testing problems. The model is 
described as compensatory due to the 
additive nature of the logit (as pre- 
sented in the next section in Equation 
4) .  This feature makes it possible for an 
examinee with low ability on one dimen- 
sion to compensate by having a higher 
level of ability on the second dimension. 
In this section, a brief theoretical expla- 
nation of the two-parameter compen- 
satory MIRT model is presented. Rela- 
tionships between the two-parameter 
unidimensional IRT model and the two- 
dimensional MIRT model are also de- 
scribed. This section concludes with a 
brief overview of two other multidimen- 
sional IRT models. 

Factor Analytic ~ u ~ ~ i d i m e ~ s i o n a l  
Model f o r  Compensatory Abilities 
One way to understand the factor ana- 
lytic approach to the parameterization 
of multiple dimensions is to review the 
work of Christoffersson (1975; also see 
McDonald, 1997,1999). He defined a set 
of unobservable variables, u,  that follow 
the multiple common factor model. Thus, 
item i can be expressed as 

threshold, t,, they will get the item cor- 
rect. If not, their effort will result in an 
incorrect response. For each dichoto- 
mous item i, an examinee’s response, U,, 
can be expressed as: 

and 

U,=Oifu,<t,. 

The proportion of examinees correctly 
responding to itemi (i.e., thep value or 
difficulty level) can be expressed as the 
proportion of area under a normal curve 
beyond the threshold t, as 

P, = N (  tJ (3) 

where N denotes the normal ogive 
function. 

This outcome leads to the formulation 
of thek-dimensional normal ogive model 
that can be expressed as 

P = [u, = 1 18, ... e,} = I.{p,, +P’e,} 

= h’{P,o + P I i Q l  + P z a Q a  f... 

+ P%k% 1, (4) 

where 

and for the kth dimension 

(6) p ,  =-- hi 
1. &’ 

v, is the explained item variance or 
1 minus the communality, given as 

where P is the covariance matrix of la- 
tent abilities. In Equation 4, N is the 
normal ogive function and 8 is the la- 
tent ability vector. It is helpful to note 
that this is a direct extension of Lord‘s 
(1980) Parameterization of the unidi- 
mensional model, v, = h‘f + F,, (1) 

where A‘= [A , ,  ha,.  . . , A,] is the matrix 

of common factors, and 6, is the i th 
unique factor. The model assumes for 
each itemi there is a latent abilityu, that 
is required to correctly answer the item. 
This latent ability is assumed to be con- 
tinuous and normally distributed. If the 
examinees’ proficiency is beyond a given 

P{UZ = 1 I e} = N{a, (e - b,)} 

of common factor loadings, f is a vector = N{a,O-a,bt}. ( 8 )  

Comparing the two models for the uni- 
dimensional case, pt0 is analogous to 
-arb, and thus cannot be interpreted as 
simply the difficulty or location parame- 
ter, 6,. However, pz does correspond to 
a,, the discrimination parameter. 

To understand further the link be- 
tween Lord‘s parameterization and the 
factor analytic model, Equations 5 and 6 
provide a link between the classical test 
theory (CTT) difficulty and discrimina- 
tion parameters (i.e.,p value and biserial 
correlation) with their unidimensional 
IRT counterparts, the a and b parame- 
ters. Specifically, the IRT a and b param- 
eters can be linked to their CTT counter- 
parts by the equations 

and 

where ?“his is the biserial correlation for 
item i and z b i )  is the x value that cor- 
responds to the threshold point for item 
i. Note that the area under the marginal 
normal curve that contains the thresh- 
old value is equal to the proportion of 
examinees answering the item cor- 
rectly (i.e., the p value of the item). 
Conceptually, Equations 6 and 9 are 
equivalent, where &, the factor loading, 
represents the correlation between the 
item score and factor. The item unique- 
ness in the denominator of Equation 6 
is directly related to the square root of 
one minus the proportion of explained 
item variance or ,/G. 

Conceptually, Equation 5 is directly 
analogous to the negative product of 
Equations 9 and 10, 

In the unidimensional case, the rela- 
tionship between the p value, biserial 
correlation, and the item characteristic 
curve (ICC) can be easily shown graphi- 
cally. In Figure 1, the top graph repre- 
sents conditional distributions of the 
biserial relationship between the latent 
ability (0) and the continuous scale of 
knowledge Y,  for a particular item i. For 
all examinees with ability@, there is as- 
sumed to be a conditional normal dis- 
tribution of the latent variable Y that 
determines how the examinees will an- 
swer item i. The probability that exami- 
nees at this 8 level will get the item 
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item i and the corresponding unidimensional item characteristic curve. 
(Biserial = 0.6; p value = 0.5.) 

correct is equal to the proportion of the 
conditional distribution that lies above ti. 
Thus, at each level of 8, the proportion of 
the conditional distribution that lies 
above the threshold ti corresponds to the 
probability of correct response. Collec- 
tively, these probabilities form the uni- 
dimensional ICC. Note also that the pro- 
portion of the marginal Ydistribution 
above this threshold corresponds to the 
p value of the item. An analogous illus- 
tration for the two-dimensional case is 
shown in Figure 2. Although more com- 
plicated, the concept is a direct exten- 
sion of the unidimensional case. Instead 
of thinking of the threshold as a line, it 
now is represented as a threshold sur- 
face. At each ordered pair of the latent 
abilities, el> OZ, the proportion of the 
normal curve lying above the threshold 
corresponds to the conditional probabil- 
ity of correct response. When taken in 
concert, the proportions will form the 
item response surface. 

One advantage of using the factor an- 
alytic approach for the multidimensional 

model is that it allows one to estimate 
the correlation between factors that un- 
derlie test performance. For the two- 
factor solution, where €4 and e2 are the 
two latent abilities, r(e,,e,) = $12s Then, 
the underlying composite is scaled so 
that yi can be expressed as 

yfi = Jl-1; -1; -21,1&,. (12) 

Many researchers represent the two- 
dimensional normal ogive model pre- 
sented in Equation 4 as 

where al corresponds to A,, the discrim- 
ination parameter for the 8, trait; az 
corresponds to h2, the discrimination pa- 
rameter for the €& trait; d corresponds to 
aloeation parameter; and 1.7 is the scal- 
ing factor to make the logistic and normal 
ogive models equivalent. [The parameter 

d is only equivalent to the b parameter 
(i.e., item difficulty) for the unidimen- 
sional case. ] 

Other MIRTModels 
Despite the popularity of the two- 
parameter compensatory MIRT model, 
other models exist. For example, 
Sympson (1978) developed the two- 
dimensional noncompensatory or partial 
compensatory MIRT model. This model 
is described as noncompensatory due to 
the multiplicative nature of the logit. Be- 
cause the individual component proba- 
bilities are multiplicative, the over-all 
probability of a correct response is 
bounded in the upper limit by the small- 
est component probability. Thus, in this 
model, being high on one ability cannot 
compensate for being low on the other 
ability. Spray and Ackerman (1986) also 
developed a generalized MIRT model 
that combines the characteristics of 
the compensatory and noncompensatory 
models. With the advent of Markov chain 
Monte Carlo methods, such as Gibbs 
sampling (Gelfand &Smith, 1990; Geman 
& Geman, 1984), the item and ability 
parameters for these models can now be 
estimated. However, researchers are 
just beginning to study and apply these 
models and, hence, much work remains. 

Estimating and Representing 
MIRT Item Parameters 
Overview 
Although other programs are available 
for estimating multidimensional item 
parameters for dichotomously scored 
data (e.g., TESTFACT; Wilson, Wood, & 
Gibbons, 1991), NOHARM is a popular 
choice because it has the capability to 
perform confirmatory analyses and it is 
accessed easily. NOHARM is the acronym 
for the normal ogive by harmonic analy- 
sis robust method. The program was writ- 
ten by Fraser (1988) to fit the unidimen- 
sional and multidimensional normal 
ogive models of latent trait theory, as pre- 
sented by McDonald (1967), NOHARM 
can be downloaded from http://www. 
niagarac.on.ca/-cfraseddownload. This 
program uses a nonlinear factor analytic 
approach (McDonald, 1967) to estimate 
item parameters in either an exploratory 
or confirmatory mode. If practitioners or 
researchers were unsure of the under- 
lying structure, theywould use the ex- 
ploratory mode of NOHARM. If a partic- 
ular structure is hypothesized, then the 
confirmatory mode should be used. In 
the confirmatory mode the user specifies 
which dimension or dimensions each 
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corresponding conditional distributions relate c r  to a two-dimensional 

item is measuring. NOHARM does not 
have the capability to estimate the exam- 
inees’ ability levels. 

Estim,ation of Multidimensional t t e m  
Parameters Using NOHARM 
The NOHARM program estimates the 
threshold parameters, pzol using a closed 
form expression by solving the sample 
analog of Equation 4. Discrimination 
parameters, pi, are estimated using un- 
weighted least squares minimizing the 
expression 

where n,: is the rth term approximation 
of a normalized Hermite-Tchebycheff 
polynomial estimation of the proportion 
answering itemsi and j  correctly, using a 
quasi-Newton algorithm. p ,  is the pro- 

portion of examinees with correct scores 
on itemsi and j  (McDonald, 1997). 

Over the past decade NOHARM has 
emerged as a popular and widely used 
program to estimate item parameters 
for the compensatory multidimensional 
IRT model. Despite this popularity, only 
preliminary work by Balassiano and 
Ackerman (1995) and Ackerman, Kelkar, 
Neustel, and Simpson (2001) has been 
conducted to investigate the accuracy 
of the estimation process used by 
NOHARM. To our knowledge, no re- 
search has been conducted on the ac- 
curacy of item parameter estimation in 
confirmatory mode. As a result, more 
research is needed. 

Using the NOHARM Program.for 
MIRT Analgses 

N O ~ A ~ M ~ n p ~ t  File. The NOHARM 
analysis used to fit the two-dimensional 

model for the 35-item mathematics test 
is described in this section. The input file 
is presented in Appendix A. To begin, 
NOHARM requires a title on line 1. This 
title cannot be longer than 75 characters. 
On the second line, the program requires 
eight integers, separated by a space. 
These integers specify (a) the number of 
items to be analyzed (35 in our exam- 
ple), (b) the number of dimensions to 
be fit (2 in our example), (c) the num- 
ber of examinees (n  = 6,000), (d) an in- 
teger indicating the type of input data 
(0 for raw data3 and 1 for a lower tri- 
angular product moment correlation ma- 
trix), (e) an integer indicating whether 
the analysis is exploratory or confirma- 
tory (0 for confirmatory and 1 for ex- 
ploratory), (f) an integer indicating how 
starting values are set (0 if the program 
generates the startingvalue; 1 if starting 
values are supplied by the user), (g) 
an integer specifying whether the raw 
product moment correlation should be 
printed in the output (0, if yes and 1, if 
no) and, finally, (h) an integer specify- 
ing whether the residual matrix should 
be printed in the output (again, 0, indi- 
cating yes and 1, indicating no). 

Next, the lower asymptotes (i.e., the c 
or “pseudo-guessing” parameter) must 
be entered. NOHARM fixes thec parame- 
ter to these specified values. Even if a 
two-parameter model is estimated, the 
user must specify these parameters to be 
0 for each item. Lines 3-5 in the current 
example specify the fixed guessing para- 
meter for each item (0.00 is used for all 
items in the current example). 

When conducting a confirmatory 
analysis, the user must supply two addi- 
tional pattern matrices. The first pattern 
matrix represents whether the factor 
loadings are to be fixed at their initial 
value of zero (represented in the matrix 
by 0) , estimated (represented in the ma- 
trix by l), or constrained to be equal 
to other factor loadings (represented in 
the matrix by 2). The number of dimen- 
sions being fit determines the number 
of columns in the matrix. The pattern 
matrix representing how to estimate the 
factor loadings for the confirmatory 
analyses conducted in our example are 
presented on lines 6-40. The first column 
in the matrix represents the first dimen- 
sion in our model; mathematical ability. 
Because all of the items were thought to 
measure mathematical ability, this col- 
umn contains all l’s, indicating that fac- 
tor loadings for this dimension should be 
estimated for all items. The second col- 
umn in our matrix represents the second 
dimension in our model: spatial abil- 
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ity. Since only the first six items were 
thought to measure spatial ability, the 
first six entries in this column are all 1's 
and the remaining entries are all 0's. 
This coding indicates that factor load- 
ings on this dimension should onlybe es- 
timated for the first six items and that 
the factor loadings on this dimension for 
the remaining items should be fixed at 0. 

The second pattern matrix represents 
values of the correlation matrix of abili- 
ties and is structured in a similar man- 
ner to the pattern matrix (i,e., 0 for fixed, 
1 for free, arid 2 for constrained). The 
user need only enter the lower triangu- 
lar portion of this matrix. Also, note that 
the diagonal elements of this matrix 
must be fixed at their initial value of 1.0. 
This is indicated by the 0 elements on the 
diagonal. The pattern matrix is presented 
on lines 42 and 43. Typically either the 
raw data, separated by spaces, or the 
item correlation matrix would follow at 
the bottom of the input file. However, 
due to space constraints, this is not pro- 
vided in our example. 

NOHARM Output File. The NOHARM 
output file includes a statement of all 
the input variables including the title, 
the number of items, dimensions, and 
examinees, the sample correlation ma- 
trix, the fixed guessing parameters, the 
pattern matrices, and the initial val- 
ues for item parameter estimation. Only 
the final multidimensional item parame- 
ter estimates are shown in Appendix B. 
Item location, corresponding to pzo in 
Equation 5, is called FINAL VECTOR f 0 
in the NOHARM output. Item discrimi- 
nation is called FINAL MATRIX F (coef- 
ficients of theta) in the NOHARM 
output. Item discrimination corresponds 
to in Equation 6. The correlation be- 
tween factors is also estimated in the 
section entitled FINAL MATRIXP in the 
NOHARM output. 

In addition to estimating the item 
parameters, NOHARM also calculates a 
residual matrix (i.e., the difference be- 
tween the observed correlation matrix 
and the reproduced correlation matrix 
that would result using the item param- 
eter estimates) and two summaries of 
the matrix, the sum of squares of re- 
siduals and the root mean square of 
residuals. Goodness-of-fit can then be as- 
sessed in at least three different ways. 
First, a model is deemed to provide good 
fit to the observed data when the dif- 
ference between the observed and re- 
produced correlation matrix is small, 
producing very small sum of squares 
of residuals and root mean square of 

residuals. McDonald (1999) notes that 
a model provides a sufficiently close ap- 
proximation to the data if a more com- 
plex model cannot be found that is 
identified (in the statistical sense) and 
interpretable (in the substantive or psy- 
chological sense). McDonald also con- 
tends that all decisions produced by 
evaluating the residual matrix rest on 
the user and on their substantive knowl- 
edge about the test items. 

A second method of evaluating the 
model-data fit is to determine if the 
multidimensional model provides a 
better fit to the data than the unidimen- 
sional model by comparing the residu- 
als for each of the models, similar to the 
approach taken in structural equation 
modeling (e.g., Bollen, 1989; Hayduk, 
1987; McDonald, 1999). Typically, how- 
ever, these residuals are quite small re- 
gardless of the model fit. In the example 
presented in this module, the root mean 
square of residuals differed by less than 
0.01 between the unidimensional and 
multidimensional models. 

A third approach for assessing fit is to 
compare x2 fit statistics for each model 
based on the residuals (de Champlain & 
Tang, 1997; Gessaroli & de Champlain, 
1996). However, these statistics are also 
based on the residual matrix and, as a 
result, the difference in the value of 

these statistics is comparable to the dif- 
ference in residuals (i.e., in the example 
presented in this module, the difference 
between the X 2  fit statistics was less than 
0.01). Although these three approaches 
are available, there is little consensus 
among researchers about how best to as- 
sess model-data fit. As a result, research 
is still needed in this area. 

Graphical Representations of 
Multidimensional Items and 
Information 
In the previous section, techniques 
used to estimate MIRT item parameters 
for compensatory abilities were pre- 
sented, The item characteristics were 
represented as numeric values. Recall, 
however, that item response theory has 
many graphical techniques for repre- 
senting item and test characteristics. In 
this section, graphical representations 
of items are illustrated using the 
NOHARM two-dimensional solution for 
the 35-item mathematics achievement 
test. The plots presented in this section 
are drawn largely from the work of 
Ackerman (1996) using the computer 
program DISSPLA (Computer Associates 
International, 1989). Some key differ- 
ences between unidimensional and 
multidimensional item response the- 
ory are also described. 

I001 

FIGURE 3. Four perspectives of the item characteristic surface for 
Item 3 from the mathematics subtest. 
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FIGURE 4. An equiprobability contour plot with Item Vector 3 
from the mathematics subtest. 

Item Representation. To begin, the 
ICC used in unidimensional IRT repre- 
sents the conditional probability that 
an examinee with a given latent ability 
or 0 will correctly answer an item. The 
item characteristic surface (ICS) used 
in multidimensional IRT represents 
the probability that an examinee with a 
given 0,02 composite will correctly an- 
swer an item. In other words, the item 
characteristic curve in unidimensional 
IRT is analogous to the two-dimensional 
surface in multidimensional IRT. The 
ICS for Item 3 from the 35-item mathe- 
matics test (a, = 0.55, az = 0.30, d = - 
0.87) is presented in Figure 3 (the item 
parameters are shown in Table 1 and in 
the NOHARM output in Appendix B). 
The ICS for this item reveals it is quite 
difficult and moderately discriminat- 
ing, especially for the 8, ability. 

A representation more readily inter- 
pretable than the ICS is a plot of the item 
equiprobability contours, as shown in 
Figure 4. Each contour corresponds to 
the probability that an examinee with a 
given 0102 composite will correctly an- 
swer an item. Examinees lying on the 
same contour line will have the same 
probability of a correct response. For 
the compensatory model, the contours 
are equally spaced and parallel across 
the response surface. The contour lines 
become closer as the slope of the re- 
sponse surface becomes steeper or 
more discriminating. 

The contour plot is often combined 
with an item vector plot to further en- 
hance the interpretability of each item. 
This plot depicts items as vectors in an 
orthogonal Cartesian coordinate system 
representing the two-dimensional latent 

Table 1. Multidimensional Item Parameter 
Estimates for Six Spatial Items 
Item d a1 a2 MDISC D ai 

1 0.45 2.01 0.63 2.1 1 -0.21 18 
2 2.03 1.01 0.64 1.20 -1.70 33 
3 -0.87 0.55 0.30 0.63 1.39 29 
4 -0.32 0.42 0.1 6 0.45 0.71 21 
5 0.07 0.44 0.1 5 0.46 -0.1 5 17 
6 0.47 0.91 0.25 0.94 -0.50 15 

ability space. Note that an orthogonal 
coordinate system is used merely for 
clarity so that distance measures and 
vectors can be easily calculated, under- 
stood, and interpreted. This representa- 
tion does not imply that there is a zero 
correlation between the two latent abil- 
ities. In a vector plot, multidimensional 
items are graphically depicted based 
on three characteristics: discrimination, 
difficulty, and location. Discrimination 
corresponds to the length of the item 
response vector (Reckase & McKinley, 
1991). This length represents the maxi- 
mum amount of discrimination, and is 
referred to as MDISC. For itemi, MDISC 
is given by 

where a, and az are the discrimination 
parameters. The tail of the vector lies on 
the p = .50 equiprobability contour for 
the two-parameter compensatory MIRT 
model. If extended, all vectors would 
pass through the origin of the latent abil- 
ityplane. Further, MDISC will always be 
positive so the item vectors will only be 
located in the first and third quadrants of 
the two-dimensional Cartesian coordi- 
nate system. MDISC is analogous to the 
a parameter in unidimensional IRT. 

Dfliiculty corresponds to the loca- 
tion of the vector in space. The signed 
distance from the origin to t h e p  = .50 
equiprobability contour, denoted by Dl 
is given by Reckase (1986) as 

-di D=- 
MDISC' 

where di is the location parameter for 
itemi. The sign of this distance indicates 
the relative difficulty of the item. Items 
with negative D are relatively easy and 
are in the third quadrant, whereas items 
with positive D are relatively hard and 
are in first quadrant. D is analogous to 
the b parameter in unidimensional IRT. 

Location corresponds to the angular 
direction of each item relative to the 
positive 0, axis (Reckase & McKinley, 
1991). The location4 of itemi is given by 

(1 7 )  a, 1 

MDISCi 
ai = arccos-. 

Vectors that lie close to the axis rep- 
resent items that primarily measure &, 
while vectors that lie close to the @ axis 
represent items that primarily measure 
€Iz. As vectors approach a location of 45" 
from the and 0z axes, they represent 
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items that measure a composite of both 
abilities. Vectors with a location of ex- 
actly 45" represent items that measure 
8, and equallywell. In other words, a 
vector with location cl, greater than 45" 
is a better measure of O2 than Cll, whereas 
a vector with a location a, less than 45" 
is a better measure of el. 

By examining the discrimination, dif- 
ficulty, and location of each item re- 
sponse vector, the degree of similarity in 
the 0102 composite for all items on the 
test, can be determined. The vector plot 
for Item 3, first presented in Figure 3, is 
shown in Figure 4. Notice this item vec- 
tor lies on a line that passes through the 
origin and creates an angle a, with the 
positive axis. The vector originates at, 
and is graphed orthogonal to, thep = .50 
equiprobability contour. This item is 
quite difficult ( d  =-0.87,D = 1.39) and 
moderately discriminating (a l  = 0.55, 
a2 = 0.30, MDISC = 0.63), as previously 
described, but from the vector plot one 
can see that this item is measuring a 
composite of and O2 (al  = 29"). 
However, since the item lies closer to the 

axis, it is a better measure of the 8, 
la tent ability. 

Validity Sector. Vector plots can 
also be used to compare items and to 
identify the valid subtest (Shealy & 
Stout, 1993). Thevalid subtest contains 

items that represent the CI1O2 composite 
which the test is designed to measure. 
Ackerman (1992) described the validity 
sector as a well defined section in the 
two- dimensional coordinate system con- 
taining items from the valid subtest. By 
specifying the width of the validity sec- 
tor, practitioners and researchers can 
define the range of composite skills that 
the test should measure. The width of 
the sector can vary, depending on the 
purpose of the test. Items located out- 
side the validity sector are referred to 
as invalid items. These items can be 
deleted from the test when it is desir- 
able to produce a more homogeneous 
measure of the valid subtest and in- 
crease internal consistency. 

Table 1 contains the item parameter 
estimates for the six items believed to 
measure the spatial ability dimension. 
Figure 5 contains the vector plot for the 
six spatial items. Due to the model fit, all 
other items lie directly on the axis, 
and are not presented. Item 3 is the most 
difficult ( d  = -0.87, D = 1.39) and it is 
moderately discriminating (al = 0.55, 
a2 = 0.30, MDISC = 0.63). Item 2 is the 
least difficult ( d  = 2.03, D = -1.70) and 
it is quite discriminating (a ,  = 1.01, aa= 
0.64, MDISC = 1.20). Item 1 is the most 
discriminating (a l  = 2.01, a:! = 0.63, 
MDISC = 2.11) and it is relatively easy 
(d  = 0.45, D =-0.21). Item 4 is the least 
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FIGURE 5. The vector plot for the six spatial items froin the 
mathematics subtest. 

discriminating (a ,  = 0.42, a2 = 0.16, 
MDISC = 0.45) and it is relatively diffi- 

Figure 5 also contains a possible va- 
lidity sector for the math test. In this 
example, a stringent validity sector was 
prescribed (k., the valid subtest con- 
tained only items with an angular direc- 
tion of 20" or less). This decision re- 
sulted in three items that did not lie 
within the pure validity sector. These 
three items-2, 3, and 4-were associ- 
ated with the spatial dimension in the hi- 
erarchical cluster and DETECT analyses. 
Alternatively, Items 1, 5, and 6 (which 
were never clearly associated with spa- 
tial ability in the dimensionality analy- 
ses) remain with the tolerable range of 
the ability composite and, therefore lie 
within the 81 validity sector. Clearly, how- 
ever, all six items measure the com- 
posite to varying degrees. 

cult (d = -0.32,D = 0.71). 

Infomation. In item response the- 
ory, measurement precision is evaluated 
using information. The reciprocal of the 
information function is the asymptotic 
variance of the maximum likelihood es- 
timate of ability. This relationship im- 
plies the larger the information function, 
the smaller the asymptotic variance and 
the more measurement precision. Multi- 
dimensional information (MINF) serves 
as one measure of precision. MINF is 
computed in a manner similar to its uni- 
dimensional IRT counterpart except the 
direction of the information is also con- 
sidered, as shown in the formula 

MINF = 4 ( O ) [  1 - P, ( O ) ]  
2 

(azl cosazl +ai2 cosat2) . (18) 

MINF provides a measure of information 
at any point on the latent ability plane 
(i.e., measurement precision relative to 
the 8182 composite). MINF can be com- 
puted at the item level or at the test level 
(where the test information is the sum of 
the item information functions). 

Reckase and McKinley (1991) devel- 
oped aclamshell plot to represent infor- 
mation with MINF (the representation 
was said to resemble clamshells, hence 
the term). To create the clamshells, the 
amount of information is computed at 49 
uniformly spaced points on a 7 x 7 grid in 
the 8,8, space. At each of the 49 points, 
the amount of information is computed 
for 10 different directions or ability com- 
posites from 0" to 90" in 10" increments 
and represented as the length of the 
10 lines in each clamshell. Figure 6 con- 
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FIGURE 6. The clamshell d o t  for the six spatial items from the 
mathematics subtest. 

tains the clamshell plot for the three spa- 
tial items that lie outside the validity sec- 
tor specified in Figure 5. These three 
items provide the most measurement 
precision for the 0102 composite from 28" 
to 31", which is beyond the acceptable 
angular composite of the prescribed O1 
validity sector. 

Ackerman (1996) also developed a 
number plot to represent multidimen- 
sional information. To create the num- 
bers, the amount of information is com- 
puted in 49 uniformly spaced points on a 
7 x 7 grid in the 0102 space. At each of the 
49 points, the direction and amount of 
information are computed. The direc- 
tion of maximum information is given as 
a numeric value on the grid while the 
amount of information is represented by 
the size of the font for each numeric 
value (the larger the font, the greater 
the information). Figure 7 contains the 
number plot for the three spatial items 
outside the O1 validitysector. These items 
provide the most measurement preci- 
sion for the Ole2 composite in the angu- 
lar direction between 28" and 31". 

Future Research Directions in MIRT 
Overview 
This module would not be complete if 
we stopped at demonstrating the use of 

MIRT without discussing some directions 
for future research. Although many re- 
searchers and practitioners believe that 
educational and psychological tests mea- 
sure multiple constructs or dimensions, 
MIRT is still in the early stages of devel- 
opment (Reckase, 1997). As a result, re- 
search on MIRT theory and applications 
of MIRT models will become more preva- 
lent in the future. Four specific areas of 
future research are immediately appar- 
ent to us: (a) test development, (b) di- 
agnostic information based on ability 
estimation, (c) differential item func- 
tioning, and (d) MIRT models for polyto- 
mous data and higher dimensional space. 
Each of these areas is described briefly. 

Test Development 
Multidimensional IRT analyses can help 
the practitioner provide evidence that 
test scores are being properly used and 
interpreted (Ackerman, 1994, 1996). If 
the results of a test are reported as a sin- 
gle score, then it is assumed implicitly 
that all the items are measuring the 
same skill or same composite of skills. 
Dimensionality analyses can help estab- 
lish the degree to which this is true. 
Response data is an interaction between 
examinees and items. For some exami- 
nees, these data may be unidimensional; 
for others, multidimensional. Thus, di- 

mensionality analyses should be part of 
a standard set of analyses conducted 
after each test administration. Dimen- 
sionality needs to be separated into 
valid, replicable traits and construct ir- 
relevant traits (American Educational 
Research Association, American Psycho- 
logical Association, & National Council 
on Measurement in Education, 1999). 
This division can help the practitioner 
decide if multiple scores should be re- 
ported. In addition, if multiple scores are 
being reported, then vectors plots and 
information plots can support the con- 
structs presented in table of specifica- 
tions and provide insight into the relative 
composite of abilities each item is best 
measuring. 

Diagnostic Information Based on 
Ability Estimation 
What is the effect of using a unidimen- 
sional model to estimate student profi- 
ciency when the data are actually multi- 
dimensional? Although a great deal of 
research has been conducted on the ef- 
fects on model misspecification for item 
parameter estimation, little research has 
been conducted on the effects of model 
misspecification for ability parameter es- 
timation. One exception is a study con- 
ducted by Walker and Beretvas (in 
press). They demonstrated that when 
multidimensional data are analyzed 
using a unidimensional model, incorrect 
inferences can be made about student 
proficiency. Furthermore, these errors 
were made primarily for those exami- 
nees that differed on the secondary di- 
mension and these examinees were more 
likely to be placed into different profi- 
ciency classifications based on the two 
different models. This outcome likely oc- 
curs because difficulty and dimensional- 
ity are confounded in the unidimensional 
estimate of ability, resulting in a multidi- 
mensional composite that does not re- 
main consistent throughout the 
estimated unidimensional ability scale 
(Reckase, Carlson, Ackerman, & Spray, 
1986). 

At a time when proficiency classifica- 
tions in curricular areas are often being 
used to make high-stakes decisions for 
students, further research into this area 
is important. Furthermore, modeling the 
data in a multidimensional manner, 
when it is appropriate, allows practition- 
ers to make separate inferences about 
an examinee for each of the distinct di- 
mensions. This additional information is 
a valuable asset to anyone who wants to 
learn more about why students are not 
proficient on a particular construct and 
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FIGURE 7. The number  plot for the six spatial items from the  
mathematics subtest. 

this information could provide teachers 
with more diagnostic information. 

Duerential Item Functioning 
Differential item functioning (DIF) 
occurs when examinees from different 
groups have a different probability or 
likelihood of answering an item correctly, 
after conditioning on ability. A number 
of DIF methods are available, each with 
different theoretical strengths and well 
documented empirical support (Camilli 
&Shepard, 1994; Clauser & Mazor, 1998). 
Unfortunately, little progress has been 
made in understanding why DIF occurs 
despite the availability of these methods. 
To address this problem, Roussos and 
Stout (1996) proposed the DIF analysis 
framework. It is a two-stage approach 
intended to bridge the gap between sub- 
stantive and statistical analyses. The first 
stage is a substantive analysis in which 
DIF hypotheses are generated. Subs- 
tantive analyses can be guided by test 
specifications, content reviews, empir- 
ical analyses, or psychological analyses 
(Gierl, Bisanz, Bisanz, Boughton, & 
Khaliq, 2001). The second stage is a 
statistical analysis in which the DIF 
hypotheses are tested. By combining 
substantive and statistical analyses, re- 
searchers can begin to identify and study 
systematically the sources of DIF. 

The Roussos and Stout (1996) frame- 
work is based on the multidimensional 
model for DIF (MMD) proposed by Shealy 
and Stout (1993). MMD is a theoretical 
account for how DIF occurs. It is based 
on the premise that DIF is produced by 
multidimensionality. The main construct 
that the test is intended to measure is 
the primary dimension. DIF items are 
believed to elicit at least one dimension 
in addition to the primary dimension 
(e.g., Ackerman, 1992; Camilli & Shepard, 
1994; Kok, 1988; Lord, 1980; McDonald, 
1999,2000; Roussos & Stout, 1996; Shealy 
%Stout, 1993). 

Few studies have been conductedwith 
real test data to support the utilityof the 
Rousso and Stout (1996) framework or, 
for that matter, of evaluating the claim 
that multidimensionality produces DIF. 
Two exceptions are noted. First, Gierl 
and Khaliq (2001) used the DIF analysis 
framework to study translation differ- 
ences on ninth-grade achievement tests 
where the test was administered in the 
languages of English and French (Le., 
the English test was translated into 
French). An I I-member committee of 
testing specialists conducted a substan- 
tive analysis of existing DIF items. In 
their review, four sources of translation 
DIF were identified. The two translators 
used these four sources to categorize a 

new set of DIF items from sixth- and 
ninth-grade Mathematics and Social 
Studies achievement tests. Each item 
was associated with a specific source of 
translation DIF and each item was an- 
ticipated to favor a specific group of 
examinees. Finally, a statistical analysis 
was conducted on the items in each cat- 
egory. Results from the statistical analy- 
ses revealed that the translators cor- 
rectlypredicted the group that would be 
favored for many of the DIF items across 
content areas and grade levels. Second, 
Walker and Beretvas (2001) showed that 
DIF occurred for open-ended mathemat- 
ics items in favor of students who were 
more proficient in their ability to com- 
municate in writing. Similar to the com- 
plex data structure explored in this 
module, these items were hypothesized 
to be multidimensional, measuring math- 
ematical communication in addition to 
general mathematical ability, while the 
re- maining items were hypothesized to 
be unidimensional. Further research 
that explores the presence of DIF in the 
context of MIRT is needed. 

MIRTModels for Polytomous Data and 
Higher Dimensional Space 
Although multidimensional models for 
polytomously scored data exist (e.g., 
Kelderman & Rijkes, 1994; van der Lin- 
den & Hambleton, 1997), most research 
in MIRT has been conducted using di- 
chotomouslyscored data in a two-dimen- 
sional space. Indeed, the focus in this 
module was on dichotomously scored 
items using two-dimensional data. How- 
ever, the increased use of open-ended 
items on large-scale tests makes it more 
important than ever to explore MIRT 
models for polytomously scored data. 
How well the available multidimensional 
models for polytornously scored data rep- 
resent the underlying structure in this 
response format has not yet been fully 
explored. In fact, research on the accu- 
racy of NOHARM item parameter esti- 
mation with dichotomously scored data 
is far from complete. Furthermore, ex- 
tending the graphical representations of 
MIRT items to the polytomous case is not 
yet a reality, nor is extending the graph- 
ical representations to higher dimen- 
sional space, although it is possible to 
model higher dimensional space. One as- 
pect of MIRT that can be used for higher 
dimensions with polytomous items is 
related to dimensionality assessment. 
Specifically, DIMTEST has been modified 
for use with polytomous data in a pro- 
gram called Poly-DIMTEST (Nadakumar, 

48 MIRT Instructional Module/Educational Measurement: Issues and Practice 



Yu, Li, & Stout, 1998). However, rela- 
tively few studies have been conducted 
to evaluate the accuracy of this program 
and, as a result, much more research is 
needed. 

Self-Test 
1. What is the most important thing 

to do before conducting a MIRT analy- 
sis? 

2. What is the difference between 
complex and simple structure? 

3. How can one determine if the 
data are multidimensional? 

4.  The most common two-dimen- 
sional IRT is called a “compensatory” 
model. Why do we use this term? 

5. A common way to represent items 
in a two-dimensional latent space is to 
use a vector. How is the vector drawn, 
and what characteristics of the item is 
it representing? 

6. When an item is measuring a 
composite of two identifiable abilities, 
the information for this item is actually 
computed for several different compos- 
ites. Why is this? 

7. The a,, a2, and d parameter esti- 
mates for three items are presented 
below: 

Item 1: 0.9650 0.6350 0.1550 
Item 2: -0.2330 1.1240 0.6940 
Item 3: -0.9980 0.5700 1.1990 
Compute MDISC, D, a, in radians, 

and a2 in degrees for each item and 
then identify each item in the vector 
plot below. 

4.0 

3.0] 

-1.0 

8. What are the two methods for rep- 
resenting information in multidimen- 
sional item response theory? How do 
these methods compare and contrast? 

Answers to Self-Test 
1. The most important thing to do 

before conducting an MIRT analysis is 

to determine whether or not the data 
are multidimensional. This should in- 
clude both substantive analyses, based 
on the item content and the cognitive 
skills needed to correctly answer items, 
as well as empirical analyses. If the data 
are indeed multidimensional, each of 
the dimensions needs to be clearly 
identified. 

2. Simple structure occurs when all 
test items measure primarily only one 
construct, latent trait, or dimension. 
Complex structure occurs when some 
items measure a composite of con- 
structs, latent traits, or dimensions, as 
opposed to primarily one dimension. In 
both cases, multiple dimensions are 
being measured by test items. 

3. Substantive analyses can be con- 
ducted that make use of test specifica- 
tions, as well as experts who have 
extensive knowledge of the content and 
examinees’ cognitive processes needed 
to answer items. If subsets of items ap- 
pear to be measuring different content 
knowledge and/or processes, then these 
sets of items have the potential to repre- 
sent distinct dimensions underlying the 
test. Without substantive evidence for 
multidimensionality, empirical analyses 
can be conducted that try to find dis- 
tinct clusters of items, such as HAC or 
DETECT. With substantive evidence for 
multidimensionality, DIMTEST can be 
used to test whether two or more groups 
of items are dimensionally distinct. 

4. We say the model is compensatory 
because the terms in the exponent 
(logit) are additive. This means that 
one can achieve the same probability of 
a correct response by having a low abil- 
ity on 81 and high ability on 82 or just 
the opposite, high ability on 81 and low 
ability on 82. Compensation is greatest 
when an item has equal discrimination 
parameters, e.g., a, =LO and a2 = 1.0. 

5. Vectors are drawn on lines which 
pass through the origin. They only 
occur in the first and third quadrants 
because the discrimination parameters 
are constrained to be greater than or 
equal to zero. The tail of the vector lies 
on the p = .5 equiprobability contour. 
The tail of the vector is located a signed 
distance (i.e., + = 1st quadrant; - = 3rd 
quadrant) from the origin. This dis- 
tance is equal to D. The length of the 
vector represents the amount of dis- 
crimination, MDISC. The angle the vec- 
tor makes with the O1-axis represents 
the composite of skills that the item is 
best measuring. 

6. Unless one of the discrimination 
parameters is equal to zero, the item is 

capable of distinguishing between dif- 
ferent levels of multiple composites of 
ability. When we draw an item vector, 
we are indicating the direction or com- 
posite of 8, 8, that is being best mea- 
sured. It is this composite direction 
that the item is maximally discriminat- 
ing or providing the most information. 
The “clamshell” plot illustrates how 
much information the item is providing 
for 10 different composites in equal in- 
crements from the 0” composite (infor- 
mation about only 8,) to the 90” 
composite (information about only 82). 

7. Item 1: MDISC = 0.6536, D = 
-1.4763, a,, = 0.2394, and a, = 14 

Item 2: MDISC = 1.3210, D = 
0.1764, a, = 0.5531, and a, = 32 

Item 3: MDISC = 1.3276, D = 
0.7517, a, = 1.1270, and a, = 65 

4.0 1 

-4.0 

8. Reckase and McKinley (1991) 
developed a clamshell plot to repre- 
sent information. To create the 
clamshells, the amount of information 
is computed at  49 uniformly spaced 
points on a 7 X 7 grid in the 8, 8, 
space. At each of the 49 points, the 
amount of information is computed for 
10 different directions or ability com- 
posites from 0” to 90” in 10” incre- 
ments and represented as the length 
of the 10 lines in each clamshell. 
Alternatively, Ackerman (1992) devel- 
oped a number plot to represent mul- 
tidimensional information. To create 
the numbers, the amount of informa- 
tion is computed in 49 uniformly 
spaced points on a 7 X 7 grid in the 8, 

space. At each of the 49 points, the 
direction and amount of information 
are computed. The direction of maxi- 
mum information is given as a numeric 
value on the grid while the amount of 
information is represented by the size 
of the font for each numeric value in 
which the size of the font is propor- 
tional to the amount of information. 
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Notes 
The a.uthors contributed equally to the 

preparation of this manuscript. Therefore, 
the authors are listed in alphabetical order. 

We appreciate the comments and feed- 
back provided by W. Todd Rogers, Richard 
Luecht, Steve Hunka, our graduate stu- 
dents, and three anonymous reviewers. 

1 Throughout this module the terms con- 
struct, dimension, faclor, and latent ability 
are used interchangeably to refer to the con- 
cept or characteristic that a test is designed 
to measure. In multidimensional IRT, we 
study tests designed to measure two or more 
of these concepts or characteristics. 

2 A  complete description of the five condi- 
tions required to achieve Thurstone's (1947) 
definition of simple structure are presented 
in McDonald (1999, pp. 179-180). 

If raw data are used, then spaces must be 
present between item responses or, as an al- 
ternative, the user can run the PRODMOM 
program that accompanies NOHARM to gen- 
erate the lower triangular correlation matrix. 

In some computer programs, like Micro- 
soft EXCEL, the arccosine of a number is ex- 
pressed in radians (ranging from 0 to n) 
rather than degrees. Radians can be quickly 
converted to degrees by remembering that 
1 radian = 180/x. For example, 0.30 radians 
equals 17". 
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Appendix A 
Confirmatory Analysis Using Two-Dimensional Mathematics Data 
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0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 

*RAW CORRELATION MATRIX FROM PRODMOM PROGRAM IS INSERTED HERE* 
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Appendix B 
Results 

Final vector f0 

0.448 
2.031 

-0.868 
-0.321 

0.074 
0.470 
0.322 
0.346 
1.335 
0.225 

-1.31 8 
-5.326 

1 .I40 
0.758 
0.301 

-0.545 
0.1 10 
0.965 
0.734 

-1.945 
0.878 

-0.21 1 
1.673 

-0.1 99 
-0.1 70 
-0.453 
-0.1 74 

0.523 
-I .489 

-0.093 
-0.278 

0.972 

0.344 
-0.481 

-0.344 

~ 

FINAL MATRIX F 
(coefficients of theta) 

FINAL MATRIX P (covariances 
[correlations] of theta) 

1 2 1 2 

1 2.006 0.630 1 1 .ooo 
2 1.007 0.639 2 0.841 1 .ooo 
3 0.549 0.295 
4 0.41 7 0.1 59 
5 0.444 0.150 
6 0.905 0.254 
7 0.426 0.000 
8 1.148 0.000 
9 0.566 0.000 

10 0.81 6 0.000 
1 1  2.807 0.000 
12 3.633 0.000 
13 1.084 0.000 
14 0.965 0.000 
15 0.548 0.000 
16 1.072 0.000 
17 1.058 0.000 
18 0.957 0.000 
19 0.953 0.000 
20 2.775 0.000 
21 0.516 0.000 
22 0.41 2 0.000 
23 0.628 0.000 
24 0.787 0.000 
25 0.545 0.000 
26 0.573 0.000 
27 0.689 0.000 
28 2.842 0.000 
29 0.731 0.000 
30 0.631 0.000 
31 0.730 0.000 
32 1.032 0.000 
33 1 . I  78 0.000 
34 1.796 0.000 
35 1.672 0.000 

*RESIDUAL CORRELATION MATRIX IS INSERTED HERE* 

Sum of squares of residuals (lower off-diagonals) = 2.903305438E-0002 
Root mean square of residuals (lower off-diagonals) = 6.985345330E-0003 
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