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Oshima, Raju, Flowers, and Slinde (1998) described procedures for identifying
sources of differential functioning for dichotomous data using differential bundle
functioning (DBF) derived from the differential functioning of items and test
(DFIT) framework (Raju, van der Linden, & Fleer, 1995). The purpose of this study
was to extend the procedures for dichotomous DBF to the polytomous case and to
illustrate how DBF analysis can be conducted with polytomous scoring, common to
psychological and educational rating scales. The data set used was parent and
teacher ratings of child problem behaviors. Three group contrasts (teacher vs. parent,
boy vs. girl, and random groups) and two bundle organizing principles (subscale
designation and random selection) were used for the DBF analysis. Interpretations of
bundle indexes in the context of child problem behaviors were presented.

Recently researchers have attempted to address differential functioning within a
more substantive framework by shifting the focus from an examination of indi-
vidual items to an examination of groups of items. Although much of the
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research involving differential item functioning (DIF) has been focused at the
item level, some researchers have considered differential functioning at the test
level (Longford, Holland, & Thayer,1993, Raju, van der Linder, & Fleer, 1995;
Shealy & Stout, 1993a), as well as at the bundle level, where items are consid-
ered in an aggregated fashion (Douglas, Roussos, & Stout, 1996; Gierl, Bisanz,
Bisanz, & Boughton, 2003; Gierl, Bisanz, Bisanz, Boughton, & Khaliq, 2001;
Gierl & Khaliq, 2001; Oshima, Raju, Flowers, & Slinde, 1998; Wainer, Sireci, &
Thissen, 1991).

Douglas et al. (1996) introduced the concept of differential bundle functioning
(DBF), in which item bundles were defined as clusters of items that had been cho-
sen according to some organizational principle. In this case, the items in a bundle
are not necessarily adjacent, nor do they have to refer to a common passage or
text, as is the case with differential testlet functioning as proposed by Wainer et al.
(1991). Their approach focused on identifying potential DIF bundles through the
identification of dimensionally homogeneous item bundles. This approach was
based on Shealy and Stout’s (1993a) multidimensional model for bias and used
SIBTEST (Shealy & Stout, 1993b) to assess DIF in bundles. Douglas et al.
described two methods for identifying suspect bundles: (a) use of expert opinion
alone and (b) use of a statistical dimensionality analysis along with expert opinion.

More recently, Gierl and colleagues (2003) expounded on the Roussos–Stout
DIF analysis paradigm. They describe a two-stage approach where the first stage
involves the generation of DIF hypotheses, with the DIF hypothesis specifying
whether each item or bundle intended to measure the primary dimension also
measures a secondary dimension. In the second stage, the DIF hypothesis is sta-
tistically tested. The authors point out that focusing on clusters of items based on
some organizing principle to provide a priori structure to the data greatly
enhances the interpretability of the results. They further suggest that an item
serves as a poor level of analysis because a single item represents a small, some-
what unreliable sample of a behavior. Because bundles are likely to provide a
broader sample of secondary dimensions, they should be more conducive to
interpretation and lead to better explanations regarding the nature of group differ-
ences. In addition, this approach should reduce the Type I error rate because a
smaller number of DIF hypotheses are tested (Gierl et al., 2003). In another
study, by Gierl and Khaliq (2001), the previously described framework is used to
examine differential item and bundle functioning on translated achievement tests.

Using a different approach, Oshima et al. (1998) described and demonstrated
how differential bundle functioning could be examined within the differential
functioning of items and tests (DFIT) framework. The DFIT framework, as pro-
posed by Raju et al. (1995), is an item response theory (IRT)-based parametric
procedure that can be used with unidimensional and multidimensional data that
result from either dichotomous or polytomous scoring. This framework provides
the only parametric, IRT-based measure of differential functioning at both the



DIFFERENTIAL BUNDLE FUNCTIONING 207

test and item levels. When using the DFIT framework to conduct a DBF analysis,
the first step is to calibrate all items on a test with an appropriate IRT model for
the two groups of interest. In the Oshima et al. (1998) study, a 3-parameter logis-
tic model was used and groups were based on gender or socioeconomic status.
After obtaining the item parameters for each group, item parameters were
equated or put on a common scale. Then, items were classified into substantively
meaningful bundles (e.g., cognitive dimensions, instructional objectives, reading
passage) and the DBF analysis was conducted within the DFIT framework.

Oshima et al. (1998), however, presented DBF only for the data with dichoto-
mous scoring. Therefore, the purpose of this study is to extend their study to the
unidimensional polytomous case. The focus is on describing and illustrating how
DBF analysis can be conducted within the framework of DFIT when polytomous
scoring has been employed, as is the case with many scales used in psychological
and educational settings. In the next section, the potential usefulness of the DBF
analysis with polytomous data will be presented, followed by a detailed descrip-
tion of polytomous DBF in the DFIT framework.

DBF WITH POLYTOMOUS DATA

Although much of the research on IRT and DIF has focused on tests designed to
assess performance within a cognitive domain, there has been an increase in the
application of this methodology to examine instruments that focus on assessing
constructs that could be best described as coming from a more behavioral or psy-
chological domain. Within this domain, instruments are more likely to be con-
structed with polytomous scoring and developed so they contain items that may
be clustered meaningfully with respect to assessing a similar aspect of the partic-
ular trait under consideration. The notion of item clusters becomes readily appar-
ent if one considers the frequent use of subscales when there is an interest in
assessing psychological and behavioral variables. Given the structure of many
tests within the psychological and behavioral domains, it would seem appropriate
to examine potential differential functioning within a framework that actually
accounts for the intended structure of the test (i.e., it may be more meaningful to
examine groups of items as opposed to individual items). With this in mind,
polytomous DBF analysis within the DFIT framework may provide useful psy-
chometric information for use in the development and evaluation of tests within
the psychological and behavioral domains.

Traditionally, DIF analyses have focused on sources of variation related to
examinee characteristics such as gender, socioeconomic status, race/ethnicity,
and culture. However, in a study by Maurer, Raju, and Collins (1998), the mea-
surement equivalence between raters was examined using the DFIT framework.
In this study, the rater type was used to form the subgroups subjected to the DIF
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analysis. In the case of multiple raters, determining whether or not ratings differ—
not because of differing skill, but rather because of how the scale was used in the
different rater populations—has implications for interpretation and use of data
obtained from multiple raters. Although the context of the Maurer et al. study was
that of organizational settings and performance appraisal ratings, where multiple
raters are often used, the idea of examining rater type as a source of DIF is equally
relevant in educational and psychological settings. Instruments designed to assess
psychological and behavioral constructs often are developed such that multiple
raters are called on to provide information. For example, behavior rating scales are
frequently used to assess social competence and both adaptive and maladaptive
behavior in children. In this case, ratings may be obtained from a teacher, parent,
or psychologist. Again, in order to interpret the scores appropriately it is important
to know whether the scale has the same meaning across raters. Although this prob-
lem was addressed by the Maurer et al. study, it was not approached from a DBF
perspective, but from the more basic DFIT perspective. Again, given the structure
of many psychological and behavioral assessments, DBF analysis provides a
framework that can encompass both the internal structure of an instrument, for
example, subscales, as well as the source of variation that may be present when
multiple informants are called on to provide information.

Another important issue related to psychological data with subscales is dimen-
sionality. As in any unidimensional IRT research, the assumption of unidimen-
sionality needs to be tenable. An instrument with (substantively defined)
subscales may imply multidimensionality, to some degree. According to Tate
(2002), two aspects of validity must be addressed with an instrument with
subscales, the internal structure of the instrument and the discriminant validity of
the subscores. The former relates to the unidimensionality assumption. Prior to the
DBF analysis, a dimensionality analysis needs to be conducted to assure that the
data are reasonably unidimensional. Then the DBF analysis can address the latter
type of validity, as DIF (or DBF) is manifestation of multidimensionality of data.

It should be pointed out that the iterative linking procedure is an essential part
of the IRT-based DBF analysis with a presence of prevailing multidimensional-
ity. The purpose of the iterative linking is to “purify” the linking items from two
separate IRT calibrations (reference and focal groups) so that the linking items
are fairly unidimensional for the data with multidimensionality (i.e., DIF). This
purifying method was first introduced in Lord (1980) and later simplified by
Candell and Drasgow (1988). In the Candell and Drasgow method, the linking
coefficients are obtained in multiple stages (or two stages) without reestimation
of IRT parameters, each time eliminating the apparent DIF items for the purpose
of calculating the linking coefficients. Studies have shown that iterative linking is
especially useful when the number of DIF items is large (e.g., Miller & Oshima,
1992). Given the nature of the DBF analysis with a prevailing secondary dimen-
sion (i.e., subscales), the iterative linking should prove useful.
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POLYTOMOUS DBF IN THE DFIT FRAMEWORK

The DFIT framework by Raju et al. (1995) provides three indexes of differential
functioning: (a) differential test functioning (DTF), a measure reflecting the dif-
ferential functioning of the entire test; (b) compensatory DIF (CDIF), an item-
level index that is additive with respect to DTF; and (c) noncompensatory DIF
(NCDIF), an item-level index that is a special case of CDIF in which the assump-
tion is made that all items but the one under consideration are free of DIF.

DTF

According to Raju et al. (1995), DTF across examinees may be defined as

where the expectation (e) of the squared (test-level) true score [Ts(qs)] difference
[Ds(qs)] is computed over the focal group. In the dichotomous case, the true score
for each examinee s is the sum of the probability of answering an item correctly
based on a dichotomous IRT model. In the polytomous case, the true score is
expressed as:

where n is the number of items in the test. The expected score (ES) or true score
for examinee s on item i [ESsi(qs)] can be computed as

where Xik is the score for category k, m is the number of response categories, and
Pik is the probability of responding to category k based on a polytomous IRT
model (Samejima, 1969).

The true score difference at the test level [Ds(qs)] can be viewed as the sum of
the expected score difference at the item level:
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where

The dsi in the preceding equation is the difference in the item-level true scores
for examinee s on item i.

CDIF

CDIF is defined as:

where Cov(di, D) is the covariance between di and D, , is the mean of dt, and
mD is the mean of D in the focal group. CDIF has an additive property; that is,

NCDIF

NCDIF is expressed as:

The NCDIF index is simply the expectation (taken over the focal group) of the
squared difference in true scores at the item level. A comparison of Equations 1
and 8 shows that the definitions of DTF and NCDIF are identical, except that
DTF is concerned with the squared true score differences at the test level,
whereas NCDIF is concerned with the squared true score differences at the item
level.

Within the DFIT framework, statistical significance tests can be performed on
the DTF and NCDIF indexes. However, because the c2 tests for the DTF and
NCDIF indexes are known to be sensitive to sample size, Raju et al. (1995) sug-
gested additional criteria for assessing the significance of the observed DTF and
NCDIF indexes. The current recommendation for determining whether or not
an NCDIF index is significant when an item is graded on a 3-point scale is an
NCDIF value greater than .024 (Raju, 1999). This cutoff value is based on an
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extension of the cutoff value of .006 for the dichotomous case, proposed by Fleer
(1993). These cutoff values are considered to be rough guidelines for practitio-
ners. Recently, a new significance test was proposed and tested for dichotomous
DFIT (Oshima, Raju, & Nanda, 2006). The new method, based on the item
parameter replication (IPR) algorithm, derives the cutoff values for each item by
simulating a large number of DFIT indexes under the no-DIF condition. The new
method was reported to work well for the dichotomous case. This new signifi-
cance test has not yet been fully developed and evaluated for the polytmous case;
however, the test as described in a recent paper by Raju, Oshima, Fortmann,
Nering, and Kim (2006) was applied in this study. For the full descriptions of the
DFIT procedures for the dichotomous and polytomous data, interested readers
are referred to the original DFIT articles (Flowers, Oshima, & Raju, 1999; Raju,
et al., 1995).

DBF

Oshima et al. (1998) described DBF analysis for dichotomously scored items.
This description is equally valid for the polytomous case, as shown in the Appen-
dix. DBF within the DFIT framework begins by calibrating all items with an
appropriate IRT model for the two groups of interest and then placing the item
parameters on a common scale. Using the predefined bundle classification
scheme, items are placed into different bundles. Specifically, let there be v mutu-
ally exclusive bundles (B1, . . . Bj, . . . Bv) with nj items in bundle j and n1+ . . . +nj+ . . .
+nv=n.

As shown in Equation A8 in the Appendix, CDBF (compensatory differential
bundle functioning) is an extension of CDIF where CDIF values are added for items
in each bundle to obtain CDBF. Therefore, CBDFj for bundle j may be expressed as:

It should be noted that CDIF is the expectation (average) of the product of the
true score difference at the item level and the true score difference at the test
level (Equation 6). Because the true score difference at the bundle level is simply
the sum of true score difference at the item level, CDBF becomes the sum of
CDIF indexes of all items that make up the bundle. Because the sum of CDIFs is
equal to DTF (Equation 7), the sum of CDBFs, in view of Equation 9, is also
equal to DTF. CDBFs can be used to examine the impact (on DTF) of removing
a certain bundle from the test (Oshima et al., 1998).

As shown in the Appendix, NCDBF (noncompensatory differential bundle
functioning index) is not simply the sum of NCDIF values. Instead, the DFIT

CDBF CDIFj i
i Bj

= ∑
e
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analysis needs to be carried out separately for each bundle, resulting in a value of
DTF for each bundle, which then becomes the NCDBF for that bundle. That is,

where DTFj refers to the DTF based on all items in bundle j. According to Equa-
tion 8, NCDIF is the expectation (average) of the squared difference in true score
at the item level. Similarly, according to Equation A11 in the Appendix, NCDBF
is also the expectation of the squared difference in true scores at the bundle level.
Even though the sum of item-level true score differences is equal to the true score
difference at the bundle level, the sum of squared item-level true score differ-
ences will not in general be equal to the squared true score difference at the bun-
dle level. Therefore, as previously noted, NCDBF for a given bundle is not
simply a sum of the NCDIF indexes of all items that make up the bundle. In com-
puting the different NCDBF indexes, it should be noted that estimates of ability
parameters (qs) are based on all items on the test and are obtained only once. This
approach allows one to investigate whether a particular bundle of items is
responded to differently by two groups matched by ability as measured by the
entire test. When bundles contain different numbers of items, it is not recom-
mended that the different NCDBF indexes across bundles be directly compared
because the observed size of an NCDBF index typically varies as a function of
the number items in the bundle (i.e., other things being equal, the more items, the
larger the NCDBF index). In view of this, each NCDBFj may be divided by the
number of items in the bundle, resulting in an average NCDBFj for the bundle.
That is,

This average index may be used to compare bundles for differential functioning.
Please refer to the Appendix for additional information about the CDBF and
NCDBF indexes.

As for interpreting the size of the DBF indexes, the current polytomous DFIT/
DBF framework has a recently developed significance test that can be applied.
Because the test has not undergone an extensive evaluation, we recommend the
use of the baseline method, where the baseline data are created by random bun-
dles from randomly divided groups in addition to the significance tests. The
NCDIF values produced by those baseline data can be descriptively compared to
those produced by other meaningful comparisons. For this study, the DBF analy-
sis can be viewed as a kind of profile analysis and descriptive presentations
including graphs should serve as a valuable tool for visual inspection. This

NCDBF DTFj j= , (10)
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approach should remain useful, even after an appropriate significance test
becomes readily available, because its descriptive nature would be helpful in
viewing the magnitude of DBF as well as determining the practical significance.

METHOD

Data Source

The rating scale data used in this study were obtained as part of a National Head
Start/Public School Project. In this project, children were followed from the
beginning of their kindergarten year to the end of their third-grade year. With
the exception of the initial assessments, data were collected in the spring of the
school year. The data used to demonstrate this methodology consist of parent and
teacher ratings for approximately 1,626 second-grade children.

The rating scale used in this study was the Social Skills Rating System (SSRS;
Gresham & Elliott, 1990). The SSRS consists of two distinct questionnaires, the
social skills (SS) questionnaire and the problem behaviors (PB) questionnaire.
There are two forms that have been developed for use with grades K–6, a teacher
form and a parent form. Both forms ask the rater to rate the child’s present behav-
ior using descriptors that define how often a particular behavior occurs, using the
following categories: never (0), sometimes (1), and very often (2). Although the
DBF analysis was conducted on both scales (SS and PB), only the results from
the problem behavior questionnaire were reported here as an illustration. The
problem behaviors questionnaire consists of 18 items on the teacher form and 17 on
the parent form. Three subscales, internalizing behaviors, externalizing behaviors,
and hyperactive behaviors, have been identified for the problem behaviors ques-
tionnaire. For the purposes of this study, only the common items (16), which
appeared on both the parent and teacher forms of the instrument were used.

Item Bundles

The item bundles were created using the items that were conceptually related and
that have been defined by the author of the instrument as constituting subscales
according to the teacher version of the instrument. In addition, three random bun-
dles were created. The number of items in the random bundles was based on the
number of items in the subscale bundles (two bundles of 5 items and one bundle
of 6 items). This type of bundling was used for establishing a baseline for the
potential magnitude of DBF when bundles have been created without using a
conceptually or theoretically based organizing principle. Yen (1993) used a simi-
lar approach in creating testlets for comparison purposes in an investigation of
the effects of local item dependence.



214 MCCARTY, OSHIMA, RAJU

Group Contrasts

The first contrast was between randomly formed groups. These groups were
formed by using the random selection after combining the parent and teacher rat-
ings into a single data file. The groups were then randomly formed by selecting
approximately 50% of the cases for Group 1 and the remaining cases for Group 2.
For this comparison, Group 1 served as the reference group and Group 2 as the
focal group. This contrast was set up to provide a comparison value for groups
that theoretically have no distinguishing characteristics.

Then, two more sets of contrasting groups were used in this study for demon-
stration purposes; the teacher–parent and boy–girl contrast. These particular con-
trasts were chosen because of their appearance in the literature on child behavior
ratings. Several researchers have addressed behavior ratings from the standpoint
of differences in ratings for boys versus girls as well as for ratings provided by
parents versus teachers (e.g., McGee & Feehan, 1991; Rowe & Kandel, 1997). In
the teacher–parent contrast, the parent rating served as the reference or anchor in
making the comparison. This comparison was similar to the comparison
addressed in the study by Maurer et al. (1998), in which the measurement equiv-
alence of a performance appraisal scale across peer and subordinate rater popula-
tions was examined using the DFIT framework. The boy–girl contrast was
between boy students and girl students for each type of rater, parent or teacher,
with girls serving as the reference or anchor for the comparison. This contrast
represents a more traditional comparison within the context of DIF.

Assessment of Unidimensionality

Since a unidimensional model was applied to the data, unidimensionality was
assessed with confirmatory factor analysis (CFA), using LISREL 8 (Joreskog &
Sorbom, 1996). The CFA analysis was conducted separately by rater group, but
with identical factor patterns. Prior to conducting CFA, polychoric correlations
between items within each scale and rater group were obtained using PRELIS 2
(Joreskog & Sorbom, 1996). Results from the CFA analysis are summarized in
Table 1. It shows four commonly used indexes of fit: Root mean square approxi-
mation (RMSEA), goodness-of-fit index (GFI), adjusted goodness-of-fit index
(AGFI), and comparative fit index (CFI), separately by scale and rater group. For
the RMSEA index, .05 or a lower value is a typical benchmark for good fit, and
.08 is generally considered an upper bound for acceptable fit (Browne & Cudek,
1993). The two RMSEA indexes in Table 1 are .073 for teachers and .055 for
parents, and both are below the upper bound. CFI, GFI, and AGFI values at or
above .95 are generally considered indicative of good fit (Byrne, 1998; Hu &
Bentler, 1999), whereas .90 is an appropriate lower bound of adequate fit. As
shown in Table 1, these indexes are above .95, with the exception of the CFI
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index for parents, which is .905. This latter index meets the lower bound criterion
of .90 for adequate fit. Overall, these indexes appear to suggest that the PB scale
is unidimensional across the two rater groups. According to Byrne (1998,
pp. 103–119), the indexes shown in Table 1 also appear to meet the generally
recommended cutoffs for an acceptable fit.

IRT Calibrations and Equating

Each scale was calibrated using PARSCALE2 (Muraki & Bock, 1993). This pro-
gram is especially appropriate for calibrating graded response, polytomous items.
The maximum marginal likelihood and expectation–maximization (EM) algo-
rithm were used to estimate the item parameters. The default values were used
for all estimations. In addition, estimation of underlying abilities was made using
Bayesian EAP procedures using normal priors. The item-level (chi-square) good-
ness-of-fit indexes from PARSCALE were used to assess the fit of Samejima’s
graded response model to the current data set. All of the item-level chi-squares
were nonsignificant, except for an occasional item in some groups with signifi-
cant chi-square.

Prior to running the DFIT and DBF analyses, the item parameter estimates
from PARSCALE2 were put on a common metric using EQUATE 2.0 (Baker,
1993). The estimation of equating coefficients was made by using Baker’s modi-
fied test characteristic curve method.

A two-stage linking procedure was used. At the first stage, after item parame-
ters were placed on a common scale using all items on the test, the DFIT program
(Raju, 1997) was used to identify items with large DIF (NCDIF > .024). Identi-
fied items were then deleted from the linking in the second stage. Finally, all
items were transformed using the linking coefficients obtained by the second
stage linking procedure. The item parameters from the reference group were
equated to the metric of the focal group.

TABLE 1
Goodness-of-Fit Indexes by Rater Group From a Confirmatory Factor Analysis 

(One-Dimensional Solution)

Group RMSEA GFI AGFI CFI

Teachers .073 .984 .980 .976
Parents .055 .981 .974 .905

Note. RMSEA = root mean square error of approximation;
GFI=goodness-of-fit index;
AGFI=adjusted goodness of fit index;
CFI=comparative fit index.
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DFIT and DBF Analyses

The DFIT program was used to calculate the DFIT indexes as well as the DBF
indexes. The standard DIF/DTF program was first run with all n items to obtain
the item-level CDIF values. The CDIFs for all items in a bundle were then
summed to obtain the CDBF indexes (Equation 9). For NCDBF, the standard DIF/
DTF program was run for each bundle as if the bundle was the whole test (Equa-
tion 10). This process was repeated as many times as the number of bundles
under consideration. Once the CDBF and NCDBF indexes were obtained, these
values were interpreted with respect to differences across bundle types and group
contrasts within the context of the literature related to behavior ratings.

RESULTS

Random-Group Comparison

Results from the random-group comparison are reported in Table 2. This group com-
parison can serve as a baseline for the differential functioning that might be expected
when groups are formed without respect to any particular group characteristic.

Teacher–Parent Comparison

The teacher–parent comparison is presented in Table 3. Although not reported in
Table 3, the problem behavior bundles displayed considerably less evidence of

TABLE 2
CDBF and NCDBF for Each Bundle of the Problem Behavior 

Scale for the Random Groups, Group1 (Reference), 
and Group 2 (Focal) Comparison

Bundle Name
Number 
of Items CDBF

Subscale
Externalizing 6 .000 .36
Internalizing 5 .000 .85
Hyperactivity 5 .000 .18

Random
Bundle 1 6 .000 .07
Bundle 2 5 .000 .02
Bundle 3 5 .000 .14

Note. CDBF=Compensatory differential bundle functioning;
= noncompensatory differential bundle functioning.

Actual  values have been multiplied by 1,000.

NCDBF

NCDBF

NCDBF
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differential functioning than the social skills bundles. This outcome may be
because problem behaviors in general are easier to recognize and are less context
specific. That is to say, problem behaviors generalize more than social skills to
multiple contexts. The set of items with the highest  value is the external-
izing bundle. This result may occur because the type of behavior being assessed
by this bundle would be more readily recognized in a school setting where acting-
out behaviors come to the attention of the teacher more quickly than other
behaviors.

In terms of the random bundles, one can see that even when bundles are
formed without any conceptual framework, there appears to be some differential
functioning with respect to the teacher–parent comparison. Furthermore, one can
observe some variation among Bundles 1–3, which is expected given a random
assignment with small sample sizes (6, 5, and 5 items). These values can serve as
guidelines for evaluating other meaningful bundles. For example, CDBF values
larger than .04 and  values larger than .03 (30/1,000) may suggest nonran-
domness for these data. By these estimates, one particular bundle that is beyond
the range associated with randomness is the  value for the externalizing
subscale. Based on the newly developed significance test, all subscale bundles
display statistically significant .

Boy–Girl Comparison

The subscale bundle analysis for the boy–girl comparison for parents and teach-
ers is presented in Table 4. For the parent as rater, it is interesting to note that for

TABLE 3
CDBF and NCDBF for Each Bundle of the Problem Behavior Scale for the Parent 

(Reference) vs. Teacher (Focal) Comparison

Bundle Name Number of Items CDBF

Subscale
Externalizing 6 –.039 51.04a

Internalizing 5 .024 30.11a

Hyperactivity 5 .034 16.94a

Random
Bundle 1 6 –.018 8.70
Bundle 2 5 .038 28.14
Bundle 3 5 –.001 .82

Note. CDBF=compensatory differential bundle functioning;
NCDBF=noncompensatory differential bundle functioning.
Actual  values have been multiplied by 1,000.
aIndicates significant  for subscales at α = .001.

NCDBF

NCDBF

NCDBF

NCDBF

NCDBF

NCDBF

NCDBF
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problem behaviors the bundle indexes are quite small, suggesting that parents are
equitable raters across all three types of behaviors assessed with these bundles of
items.

For the bundle indexes for teachers’ boy–girl comparison, the hyperactivity
bundle and the internalizing bundle have the highest values of . However,
looking at the CDBF values, one can see that boys are favored in one bundle and
girls are favored in the other, essentially serving to cancel each other. With this
cancellation, there seems to be some evidence of the measurement equivalence
across gender for teacher ratings of problem behaviors when a total score is
obtained. However, there is evidence of differential functioning across gender
when the focus is specifically on internalizing or hyperactive behaviors. The

 and CDBF values for the externalizing bundle are very small compared to
the other two bundles, suggesting that teachers provide equivalent ratings for
boys and girls with respect to externalizing behaviors. This finding could be due
to the fact that externalizing behaviors are more observable and in fact easier to

TABLE 4
CDBF and NCDBF for Each Bundle of the Problem Behavior 

Scale for the Girls (Reference) vs. Boys (focal) Comparison for 
Parents and Teachers

Bundle Name Number of Items CDBF

Parents
Subscale

Externalizing 6 .000 .02
Internalizing 5 .000 8.73a

Hyperactivity 5 .000 8.59a

Random
Bundle 1 6 .000 .70
Bundle 2 5 .000 .79
Bundle 3 5 .000 .14

Teachers
Subscale

Externalizing 6 .006 1.45
Internalizing 5 –.021 61.00a

Hyperactivity 5 .020 51.44a

Random
Bundle 1 6 –.001 2.39
Bundle 2 5 –.003 1.57
Bundle 3 5 .003 .98

Note. CDBF=compensatory differential bundle functioning;
NCDBF=noncompensatory differential bundle functioning.
Actual values have been multiplied by 1000. The asterisks
aIndicates significant for subscales at α = .001.
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NCDBF

NCDBF

NCDBF

NCDBF
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see, so that gender has little influence on the rating of these behaviors. The
greater degree of differential functioning seen with the internalizing and hyperac-
tivity bundles may be because these behaviors are less visible and behavioral
expectations related to gender may play a role in teacher ratings.

A random bundle analysis was also conducted for the boy–girl comparison for
parents and teachers. The CDBF and  values are quite small for all of the
comparisons. Again, using the estimate of randomness, two particular bundles,
internalizing and hyperactivity subscales (especially for teachers), appeared to
show nonrandomness. The significance test for the boy–girl comparisons for
both parents and teachers indicated statistically significant values for the internal-
izing and hyperactivity bundles.

Graphic Display

To facilitate a comparison of the  values across different bundle types
and different group comparisons, the  values by group comparison are
displayed in Figure 1. In Figure 1, several observations discussed earlier can
be highlighted. First, as expected, the most striking feature is that the 
values for the random group comparison are considerably smaller than the val-
ues seen for other meaningful group comparisons. Second, externalizing
behaviors seems to show the highest DBF for the teacher–parent comparison.
Third, parents appeared to exhibit less differential functioning than teachers in
terms of the boy–girl comparison. Fourth, internalizing and hyperactivity
behaviors are more susceptible to DBF than externalizing behaviors for the
boy–girl comparison.

DISCUSSION

A procedure to conduct a DBF analysis was introduced within the DFIT frame-
work for the polytomous data. Using polytomous questionnaire data, a teacher–
parent contrast as well as the gender contrast within each group (teacher or parent)
was used to demonstrate the information obtained when a DBF analysis was
undertaken to address differential functioning for bundles created by subscales.
The random-group comparison and the randomly created bundles were included
to provide a type of baseline comparison value.

Researchers have suggested that analyzing groups of items, as opposed to sin-
gle items, may provide a more useful way to examine differential functioning.
While an item-level analysis is a crucial part of examining differential function-
ing, the nature of a DBF analysis encourages or even requires the researcher to
approach the analysis from a more substantive standpoint by a priori identifying
item characteristics that could theoretically lead to differential functioning.

NCDBF

NCDBF

NCDBF

NCDBF
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The examples presented in this study are based on this conceptual approach,
calling on research in the area of child behavior ratings to identify relevant com-
parison groups as well as item organizing principles. Following this example, the
computation and interpretation of CDBF and  indexes were discussed. The
CDBF index was shown to be useful in examining the cancellation effect across
bundles as well as the overall direction of the differential functioning for a partic-
ular bundle. This type of information could be useful in a test development
phase, where the information could provide direction for the writing or editing of
items for the purposes of reducing differential functioning. The  index, on the
other hand, shed light on the possible sources of differential functioning. For exam-
ple, the greatest source of differential functioning came from the externalizing
subscale for the teacher–parent comparison, perhaps due to the fact that acting-
out behaviors are less tolerated in school than at home.

FIGURE 1 A comparison of values for all group comparisons for the problem
behavior bundles. All values have been multiplied by 1,000. NCDBF=noncompensatory dif-
ferential bundle functioning.

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0

0.001
1.570
2.390

51.440 ∗∗∗
61.000 ∗∗∗

1.450
0.330

0.140
0.790
0.700

8.590 ∗∗∗
8.730 ∗∗∗

0.020
0.023

0.820
28.140

8.700
16.940 ∗∗∗

30.110 ∗∗∗
51.040 ∗∗∗

1.134 ∗

0.140
0.020
0.070
0.180
0.850
0.360
0.008

RB3
RB2
RB1

Hyperactivity
Internalizing

Externalizing
Problem Behaviors All (MF-T)

RB3
RB2
RB1

Hyperactivity
Internalizing

Externalizing
Problem Behaviors All (MF-P)

RB3
RB2
RB1

Hyperactivity
Internalizing

Externalizing
Problem Behaviors All (TP)

RB3
RB2
RB1

Hyperactivity
Internalizing

Externalizing
Problem Behaviors All (Random)

∗p<.05
∗∗∗p<.001

NCDBF

NCDBF

NCDBF



DIFFERENTIAL BUNDLE FUNCTIONING 221

In considering the utility of this methodology, it is useful to look at the results
of the analyses in terms of theoretical expectations. Generally speaking, the
results of the analyses were consistent with the behavior rating literature. In addi-
tion, this study showed that the use of both random groups and random bundles
can be useful as a means of identifying meaningful values of DBF in the DIFT
framework.

The strengths of the DBF method introduced here include the versatility of the
DFIT framework, which allows the examination of differential functioning at
three different levels (item, bundle, and test) using the parametric IRT. Until
recently, the major weakness of the DFIT framework was the lack of a signifi-
cance test that was not overly sensitive to large sample sizes. However, a new
significance test based on the IPR method was recently introduced and evaluated
for dichotomous data. The work on the significance test for polytomous DFIT is
currently under way. Future research is needed to evaluate the performance of the
DFIT–DBF analysis with the new significance test.
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APPENDIX

Let there be v bundles (B1, . . . ,Bj, . . . ,Bv) with nj items in bundle j, and let
n =n1 + . . .+nj + . . . +nv represent the total number of items in the test or scale.
Using the expected raw score or true score definitions in Equations 2 and 3,
the expected raw score or true score for bundle j for examinee s may be
expressed as:

Furthermore,

where Ts(θs) is the true score at the test level for examinee s. Given Equation 5,
differential functioning at bundle j may be defined as:
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where F and R refer to the focal group and reference group, respectively. Within
the framework of bundles, differential functioning at the test/scale level for
examinee s may be expressed as:

Given Equation A4, DTF, within the context of bundles, may be rewritten as:

where the expectation (ε) is taken over the focal group. Now, within Raju et al.’s
(1995) DFIT framework, compensatory differential bundle functioning for bun-
dle j (CDBFj) may be written as:

Because

CDBFj may be written as:

which is exactly the definition of CDBFj given in Equation 9. That is, CDBFj is
simply the sum of CDIF indexes of items in bundle j. In addition, because

CDBFj may also be written as:
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If we now assume that  for all  (that is, all bundles except bun-
dle Bj have zero differential functioning), according to the definition of noncom-
pensatory DIF in the DFIT framework, an index of noncompensatory differential
bundle functioning for bundle j (NCDBFj) may be expressed as:

In view of Equation A7, the above expression may be rewritten as:

That is,

As previously noted, unlike the CDBF index, the NCDBF index is not simply the
sum of NCDIF indexes of items in a given bundle (Equation A13). Based on
Equation A11, however, NCDBF is DTF at the bundle level. Given this relation-
ship between NCDBF and the bundle-level DTF, it is possible to define appropriate
tests for assessing the statistical significance of NCDBF indexes. The chi-square
tests previously proposed by Raju et al. (1995) for the DTF index would be
equally appropriate for the NCDBF index when treated as a bundle-level DTF.
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