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ABSTRACT 
 

Using a Monte Carlo research design, this study examined the efficacy of the item 

parameter replication (IPR) method (Oshima, Raju, & Nanda, 2006) for determining 

cutoff values for polytomous items within the differential functioning of items and tests 

(DFIT) framework (Raju, van der Linden, & Fleer, 1995).  It was hypothesized IPR-

based cutoffs would be more likely to detect differential item functioning (DIF) than 

previously recommended fixed cutoffs and would have false positive rates close to the 

nominal significance level.  Results supported the efficacy of the IPR method.  Further, 

the accuracy of DIF detection was compared between the IPR method and likelihood 

ratio (LR) test (Thissen, Steinberg, & Wainer, 1988).  Across a number of conditions and 

items studied these methods demonstrated comparable power and Type 1 error rates.  

Differences between methods were observed in conditions with non-uniform DIF, where 

the LR test demonstrated more power to detect non-uniform DIF of small magnitudes.  

Sample size, focal group ability distribution, proportion of test-wide DIF, and direction of 

DIF had minimal effect on DIF detection across methods.     
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CHAPTER 1 

INTRODUCTION 

 
In recent decades, the use of standardized tests and questionnaires has grown 

tremendously within the business community.  Personnel administrators rely heavily on 

the results of tests and questionnaires to make hiring and promotion decisions, to assess 

organizational attitudes such as job satisfaction, and to identify the need for 

organizational development initiatives.  This often results in making comparisons on the 

ability or attitude of interest across groups (e.g., business units, work sites or 

demographic groups).  

 Using the information obtained from such tools in this way, however, assumes the 

test or questionnaire is an equally accurate measure of the ability or attitude of interest 

across groups.  In other words, it is assumed there is measurement equivalence across 

groups and therefore any observed score differences reflect true group differences.  For 

example, differences in measured ability between ethnic groups on a pre-employment test 

are assumed to reflect true differences in ability.  What happens, however, when we do 

not have equivalent measurement? 

 When a test or questionnaire lacks measurement equivalence, the meaning of 

score differences becomes unclear because they reflect not only meaningful group 

differences but also systematic measurement error (Drasgow & Kanfer, 1985).  

Systematic measurement errors on a single item are referred to as differential item 

functioning (DIF).  Differential test functioning (DTF) refers to systematic measurement 

errors of an entire test or scale.  When DIF or DTF is present, inappropriate conclusions 

will be made potentially resulting in implementing unnecessary, costly organizational 
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interventions and/or making legally questionable decisions.    

For instance, consider the use of a pre-employment cognitive ability test where 

observed scores are consistently lower for African American applicants than for 

Caucasian applicants.  Based on the score differences alone, one would conclude that 

African American applicants have lower ability and are therefore less qualified than their 

Caucasian counterparts.  Logically, one would then be more likely to hire Caucasian 

applicants.  If DIF or DTF is present, however, score differences do not reflect true 

differences in cognitive ability but rather are the result of measurement error.  In other 

words, an applicant’s score on this pre-employment test is a function of both ability and 

group membership, and so two equally qualified applicants may not receive the same 

score.  Any conclusions made regarding group differences in ability are now erroneous, 

and perhaps more importantly, will unnecessarily result in adverse impact in the hiring 

process.  It is to a practitioner’s advantage to avoid such circumstances.  Therefore, it is 

of vital importance to assess measurement tools for DIF/DTF before use.   

 The differential functioning of items and tests (DFIT) framework (Raju, van der 

Linden, & Fleer, 1995) is an item response theory (IRT) based procedure for assessing 

DIF and DTF.  While this framework has been shown to be an effective mechanism for 

detecting DIF/DTF (e.g., Flowers, Oshima, & Raju, 1999; Oshima, Raju, & Flowers, 

1997; Raju et al.), past research has also indicated a need for caution in generalizing 

DFIT criteria across testing situations.  Recently, a method to easily derive study-based 

criteria for DIF detection within the DFIT framework has been proposed (Oshima, Raju, 

& Nanda, 2006), and the current study aims to assess the efficacy of this new 

methodology within the DFIT framework.   
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The DFIT framework offers two indices for assessing DIF, noncompensatory 

differential item functioning (NCDIF) and compensatory differential item functioning 

(CDIF), as well as an index of DTF (Raju et al., 1995).  Raju et al. recommended chi-

square tests for assessing the statistical significance of DTF and NCDIF indices.  The 

efficacy of the proposed chi-square tests was assessed in a Monte Carlo investigation 

(Fleer, 1993). 

 Fleer (1993) demonstrated the chi-square tests for DTF and NCDIF to be overly 

sensitive for large sample sizes.  At the .01 level of significance, substantially greater 

than 1% of the items in the no-DIF condition were falsely identified as having DIF.  

Based on this finding, Fleer (1993) and Raju et al. (1995) recommended the use of 

empirically derived cutoff values to assess the practical significance of DIF.  A cutoff 

value was derived by creating a frequency distribution of observed NCDIF values across 

50 replications of a no-DIF condition.  A cut-off value of .006 was associated with the 

99th percentile and so resulted in falsely identifying approximately 1% of items as 

exhibiting DIF.  Based on this result, Fleer and Raju et al. recommended dichotomous 

items with NCDIF > .006 be designated as having DIF; DTF > .006 indicates DTF.  

Subsequent Monte Carlo investigations have recommended cutoff values for polytomous 

items as well (Bolt, 2002; Flowers et al., 1999; Meade, Lautenschlager, & Johnson, 2006). 

 These previous Monte Carlo investigations (Bolt, 2002; Fleer, 1993; Flowers et 

al., 1999; Meade et al., 2006; Raju et al., 1995) indicate the proposed cutoffs for 

dichotomous and polytomous items have worked well for assessing DIF and DTF.  The 

cutoffs proposed, however, differed across data sets.  This is to be expected, as Chamblee 

(1998) demonstrated that factors such as sample size and the IRT model influence the 
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cutoff values generated for dichotomously scored items.  So although the previous cutoff 

values have worked well, they are probably not generalizable to other items and sample 

sizes.  This is problematic because analyses conducted in practice are based on empirical 

data that span a variety of conditions (sample sizes, test lengths, etc.) and optimal cutoff 

values for a given testing situation are not known.  Furthermore, practitioners may not 

have the time or the expertise to generate their own cutoffs using data simulated to match 

testing conditions.  As a result, practitioners must currently rely upon previously 

generated cutoffs, which calls into question the accuracy of results based on these 

analyses. This reduces the practicality of assessing DIF and DTF using the DFIT 

framework.    

As a possible solution to this problem, Oshima et al. (2006) recently proposed the 

item parameter replication (IPR) method for determining cutoff values for dichotomous 

items within the DFIT framework. This method provides cutoffs that are tailored to the 

data set and easy to use in practice.   

 The IPR method begins with estimates of item parameters and their variances and 

covariances.  A large number of replications of item parameters are then generated from 

the initial set of item parameter estimates.  Next, NCDIF values are computed for all 

replications of item parameters.  The NCDIF values obtained are rank ordered to 

establish cutoff values across alpha levels.  For example, the 99th percentile rank 

corresponds to the cutoff value at the .01 level of significance.  This cutoff value is used 

for assessing statistical significance of the initial NCDIF value obtained for the item.  

This process is repeated for all items in the test, thus potentially resulting in different 

cutoffs for different items.  A Monte Carlo investigation by Oshima et al. (2006) showed 
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the IPR method is effective in maintaining acceptable Type 1 error and power rates.  It 

therefore seems the IPR methodology is a promising improvement upon the DFIT 

framework when assessing measurement equivalence for dichotomous items. 

Many tests and questionnaires used in practice, however, consist of polytomously 

scored items (e.g., Likert rating scales).  It is therefore prudent that methods of assessing 

measurement equivalence be applicable to both dichotomous and polytomous data.  The 

IPR methodology has been theoretically extended to the polytomous case (Raju, Oshima, 

Fortmann, Nering & Wonsuk, 2006), but empirical research examining its efficacy in 

detecting DIF for polytomous items has been very limited in scope.  Fortmann, Raju, 

Oshima and Morris (2006) supported the efficacy of the IPR method with polytomous 

data, finding it produced results nearly identical to those based on the previously 

recommended fixed cutoff value used by Flowers et al. (1999). Their study, however, 

was limited to just one condition of DIF.  The first purpose of the current study, therefore, 

is to conduct a more comprehensive assessment of its efficacy in detecting DIF for 

polytomous items.  It is expected that IPR-based DIF analyses will be more likely to 

detect true DIF than previously recommended fixed cutoff values and will have false 

positive rates close to the nominal significance level.  

The second purpose of this study is to compare the IPR method to the likelihood 

ratio test (LR; Thissen, Steinberg, & Wainer, 1988), another IRT-based DIF procedure.  

The LR test was chosen for comparison purposes because there has been growing interest 

in the recent literature on the use of these two procedures (Bolt, 2002; Braddy, Meade, & 

Johnson, 2006; Meade & Lautenschlager, 2004).  This research has suggested the DFIT 

framework is less sensitive to detecting DIF than the LR test.  It is important to note, 
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however, that this result is based on the use of a fixed cutoff value across items.  With the 

introduction of the IPR method to the DFIT framework, different cutoff values may be 

derived across items.  This leads one to question whether previous conclusions regarding 

the sensitivity of the DFIT framework in comparison to the LR test remain true.  Potential 

factors moderating each statistics’ ability to detect DIF are also examined.  Since these 

aspects of the study are intended to be exploratory, no formal hypotheses are stated.  
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CHAPTER 2 

LITERATURE REVIEW 

 
Personnel administrators rely heavily on the use of standardized tests and 

questionnaires in making important organizational and administrative decisions.  Before 

decisions are made, however, one must consider if the measures used provide equivalent 

measurement.  Measurement equivalence is obtained when the relations between 

observed scores and latent constructs are identical across relevant subgroups (Drasgow & 

Kanfer, 1985).  Without measurement equivalence, observed scores from different groups 

are in different scales and are therefore not comparable.   In other words, the meaning of 

score differences is unclear because they reflect not only meaningful group differences 

but also item/test bias. 

The term “bias” has commonly been understood to denote a lack of fairness in test 

results; although among psychometricians the terms “bias” and “fairness” convey distinct 

ideas.  Item or test bias refers to systematic measurement error related to group 

membership.  Bias is a characteristic of the item or test that is defined statistically.  

Fairness, on the other hand, is a socially defined concept.  A test is said to be fair if the 

decisions made and opportunities presented based on test results are in accordance with 

accepted principles, such as equal treatment or equal opportunity.  This paper will focus 

solely on the psychometric issue of item/test bias.  

Investigations of item (or test) bias involve gathering empirical evidence of 

differential performance on an item (or test) between members of a minority group of 

interest and members of the majority group.  Based on this empirical evidence alone, 

however, one cannot conclude that an item (or test) is biased (Hambleton, Swaminathan, 
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& Rogers, 1991).  This conclusion involves an inference that goes beyond the data.  The 

need to distinguish between the empirical evidence obtained in such research and the 

resulting conclusions has led to a shift in terminology.  The term differential item 

functioning (DIF) has been adopted to describe the statistical concept of item bias (i.e., 

the empirical evidence obtained).  The term differential test functioning (DTF) similarly 

describes the statistical concept of test bias.  These terms will be used throughout this 

paper.   

Research concerning DIF/DTF began in the 1960s as a result of civil rights 

legislation and primarily focused on understanding observed group differences on tests of 

cognitive ability (Raju & Ellis, 2002).  To this day, aptitude and achievement testing 

continues to be one area in which measurement equivalence across groups is of extreme 

importance.  If some groups (e.g., minority groups) systematically receive lower mean 

test scores than other groups (e.g., Caucasians), one must determine whether these 

differences are due to true differences on the latent construct or measurement error.  If 

score differences at the item or test-level are a reflection of systematic measurement 

error, an item or test is said to exhibit DIF or DTF (Drasgow & Kanfer, 1985).  DTF 

could potentially cause group differences in the selection rates (i.e., adverse impact), even 

when both groups are equally talented.   

Similarly, measurement equivalence should be examined for attitudinal 

questionnaires (Drasgow & Kanfer, 1985).  Questionnaires are used to assess 

organizational attitudes and identify the need for training and organizational development 

initiatives.  Score differences among individuals from different groups, (e.g., men vs. 

women, Caucasians vs. minority groups, managers vs. non-managers, etc.) are typically 
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assumed to reflect true group differences on the attitude being measured.  Costly 

organizational interventions are then planned to address these group differences.  If DIF 

or DTF is present in the questionnaires used, however, observed group differences may 

be erroneous and the conclusions drawn based on these results will be inappropriate.  In 

light of the potential consequences, it is therefore of vital importance that practitioners 

have a readily available means by which to assess differential functioning of items and 

tests.  To date, methods for examining DIF/DTF are rooted in two popular measurement 

frameworks: Classical test theory and item response theory (IRT). 

2.1 Classical Test Theory 

 Classical test theory rests on four fundamental assumptions.  First, classical test 

theory postulates an individual’s observed score on a single administration of a test is 

equivalent to the sum of his or her true score and measurement error.  The true score 

represents the true level of the ability or trait that the individual possesses, and 

measurement error is defined as the discrepancy between the observed and true scores.  

Second, within a person, it is assumed that the mean of errors across all possible 

replications of a test equals zero.  A person’s true score can never be known, however 

based on this second assumption, the true score can be operationally defined as the 

average observed score over an infinite number of test replications.  Third, classical test 

theory assumes that true scores are uncorrelated with error scores.  Finally, error scores 

from one replication of a test are assumed to be uncorrelated with true scores from 

another replication of the same test.  Weaknesses in this classical model led 

psychometricians to seek alternative measurement models (Hambleton et al., 1991). 

  Perhaps the largest deficiency of classical test theory is the inability to separate 
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examinee and test characteristics (Hambleton et al., 1991).  Within classical test theory 

the true score represents an examinee’s true level of ability.  This true score, however, is 

defined in terms of observed performance on the test.  In other words, ability is not 

independent of the specific test items.  Difficult test items will result in the examinee 

appearing to have low ability, while easy test items will result in the examinee appearing 

to have high ability.  Similarly, item characteristics are not independent of examinee 

characteristics.  Classical test theory defines item difficulty as the proportion of 

examinees in a group of interest who answer the item correctly (Hambleton et al.).  

Examinee ability will determine the proportion that answer the item correctly and 

therefore influence interpretation of an item as easy or difficult.  This inability to separate 

examinee and test characteristics makes it difficult to compare items completed by 

different groups of examinees, as well as to compare examinees completing different 

tests. 

 A second deficiency of classical test theory is the assumption of equal standard 

errors of measurement (SEM) for each examinee (Hambleton et al., 1991).  This 

assumption is not plausible, as test scores for examinees of different ability contain 

different amounts of error.  In other words, scores on a test are not equally precise 

measures for different levels of ability.  As a result, a test may be good at distinguishing 

between people with high levels of ability but fail to adequately make distinctions 

between people with low levels of ability.   

 Finally, classical test theory is test-oriented rather than item-oriented (Hambleton 

et al., 1991).  This is a limitation in that this model does not allow one to consider 

examinee performance at the item-level.  Investigations of bias are therefore limited to 
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examination of overall test results.  An alternative theory, IRT, addresses the limitations 

of classical test theory. 

2.2 Item Response Theory 

 At the foundation of IRT is the basic idea that an examinee’s performance on a 

test item can be explained by a set of latent abilities.  IRT postulates that the probability 

of answering an item correctly for an examinee of a given level of ability, ( )θP , is a 

function of the examinee’s ability (θ ) and the characteristics of the test item.  The 

relationship between item performance, ( )θP , and this set of latent abilities (θ ) is 

assumed to be a monotonically increasing function.  This function is referred to as the 

item response function (IRF) or item characteristic curve (ICC; see Figure 1).  In other 

words, the IRF illustrates that as the examinee’s level of ability increases so does his or 

her probability of answering an item correctly.   

  A key advantage of IRT is that ability and item parameters are invariant.  Unlike 

classical test theory, estimates of examinee ability are not dependent on the set of test 

items and item indices are not dependent on the group of examinees’ abilities.  This 

means that estimates of ability for a given examinee will be the same regardless of the 

items used.  Similarly, item indices, such as item difficulty, will be the same regardless of 

the group of examinees.  Because of this property of invariance, IRT is well suited for 

addressing item bias.  A second advantage of IRT is that it provides a means for 

computing the SEM for individual ability estimates.  This overcomes classical test 

theory’s implausible assumption of equal errors for each examinee.  The IRT framework 

and its fundamental assumptions will be described in more detail in the sections to 

follow.   
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Assumptions of IRT.  Two assumptions are made regarding the data to which the IRT 

model will be applied.  First, it is assumed the items in a given test constitute one 

dominant dimension.  That is, the test measures one ability.  When this assumption is met 

local independence is also obtained (Hambleton et al., 1991).  Local independence means 

that when the abilities influencing test performance are held constant, an examinee’s 

responses to any pair of items are uncorrelated.  Mathematically this implies the 

probability of a response pattern for an examinee on a set of items is equal to the product 

of the probabilities of the individual item responses.  For a unidimensional test this again 

suggests the ability specified in the IRT model is the only factor influencing examinee 

responses to test items.  It should be noted that multidimensional IRT models have been 

developed, but these are beyond the scope of the current paper.   

 The second assumption made in IRT is that the IRF specified in the model 

represents the true relationship between the latent ability and item responses.  In other 

words, it is assumed the IRT model chosen is appropriate for the available data.   

Unidimensional Dichotomous IRT Models.  IRT models differ with regards to the 

mathematical function used to model the data, as well as the number of specified item 

parameters.  Early work in IRT modeled data using the normal ogive.  The standard 

normal ogive represents the area to the left of any z-score on the normal curve as a 

function of the z-score.  Z-scores are represented along the x-axis, while the area to the 

left of any z-score is represented as a proportion along the y-axis.  Applied to IRT, values 

on the x-axis represent the latent ability measured and the height of the curve above a 

value represents the proportion of examinees of a given level of ability that can be 

expected to answer the item correctly. The normal ogive model, however, has commonly 
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been replaced by the logistic function because logistic models are more mathematically 

tractable (Hambleton et al., 1991).  Variations of both the normal ogive and logistic 

models are determined by the number of item parameters used to model the data.  Since 

logistic models are more commonly used and provide essentially the same interpretation, 

these will be described in further detail.  Three of the most common logistic models are 

referred to as the one, two and three-parameter logistic models and are appropriate for 

dichotomous item response data.  Hambleton et al. indicate the one-parameter logistic (1-

PL) model to be the most widely used. 

 The 1-PL model, also known as the Rasch model in honor of its developer, 

assumes that examinee ability and item difficulty are the only parameters influencing 

examinee performance.  Mathematically the IRF for a given item in the 1-PL model is 

defined as follows: 

 

 

( ) b

b

e
eP −

−

+
= θ

θ

θ
1

,        (1) 

 

 

where ( )θP represents the probability of answering the item correctly for a given level of 

ability, θ  represents the examinee ability continuum, e is a constant equal to 2.718, and b 

is the item difficulty parameter.  Specifically the b-parameter is defined as the point on 

the ability continuum at which the probability of answering the item correctly is equal to 

.5.  The larger the value of the b-parameter, the greater the ability required for an 

examinee to have a 50% chance of producing a correct answer and so the harder the item.   
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 One potential limitation of this model is that it does not allow for differently 

discriminating items.  Item discrimination refers to the ability of an item to differentiate 

among examinees on the basis of the trait or ability being examined.  Practically 

speaking, it is not possible for the IRFs to cross.  So, for example, within the 1-PL model 

it is not possible for item 1 to be more difficult than item 2 for Examinee A but vice versa 

for Examinee B.  The two-parameter logistic (2-PL) model addresses this limitation.  

 The 2-PL model is defined by the following equation: 
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where D is a constant equal to 1.7; a is the item discrimination index; and ( )θP , θ , e and 

b are defined as in Equation 1.  The a-parameter, or item discrimination index, is 

proportional to the slope of the IRF at the point b on the ability scale.  The bigger the a-

parameter, the stronger the relationship between the item and the underlying construct; 

such items are more useful for discriminating among examinees near a certain ability 

level.  The addition of this item parameter to the model allows the IRFs for different 

items to cross (see Figure 2).  In other words, it allows for differently discriminating 

items.  Still ignored by both the 1 and 2-PL models, however, is the impact of guessing 

on the probability of answering an item correctly. 

 The three-parameter logistic (3-PL) model incorporates this additional item 

parameter.  The mathematical equation for this model is as follows: 
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where c represents the probability of examinees with low ability answering the item 

correctly and all other notations are defined as in Equation 2.  The c-parameter allows for 

a nonzero lower asymptote for the IRF.  The addition of this item parameter takes into 

account performance at the low end of the ability continuum, where guessing may be a 

factor in test performance.  As such, the c-parameter is often referred to as the pseudo-

guessing parameter.   

 Although commonly used, the above models are only applicable to dichotomous 

response data.  Many item types used in psychological research, however, allow for 

multiple response options (e.g., Likert-type rating scales).  Therefore it is necessary to 

also understand the polytomous IRT framework. 

Unidimensional Polytomous IRT Models.  Polytomous IRT models are an extension of 

the dichotomous case.  A key difference between polytomous and dichotomous IRT, 

though, relates to the function used to describe the relationship between ( )θP  andθ .  

Dichotomous IRT models this relationship with a single response function for each item 

that marks the boundary between the two possible response categories.  As discussed, the 

IRF graphically displays the probability of a correct response, or in other words, the 

boundary between the correct and incorrect response.  Polytomous IRT models are more 

complex in that a given item contains multiple response categories, and so at least one 

response category is always defined by two boundaries (the boundary between that 
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response category and each adjacent response category).   

 In the case of items consisting of ordered response categories (i.e., ordinal data), 

polytomous IRT is focused on two probabilities: The probability of responding positively 

rather than negatively at a given boundary between response categories and the 

probability of responding in a given response category.   The boundary response 

functions (BRFs; see Figure 3) illustrate this first probability, the probability of 

responding positively rather than negatively at a given boundary between response 

categories.  The number of BRFs will be equal to the number of response categories 

minus one.  Polytomous models handle ordinal data by creating multiple dichotomies and 

modeling each BRF separately using a dichotomous model.  The information obtained 

from the BRFs is then used to derive the probability of responding in a given response 

category. 

  The probability of selecting a particular response category as a function of θ  is 

graphically displayed by the category response functions (CRFs; see Figure 4).  Unlike 

the dichotomous IRF, polytomous IRT yields as many response functions as there are 

response categories for the item.  This marks a clear distinction from the dichotomous 

IRT models; within polytomous IRT there is no single equivalent of the dichotomous 

IRF.  Further, the CRFs are not monotonically increasing.  The sum of these probabilities 

for an examinee at a given level of ability will equal one.   

 It should be noted that not all polytomous IRT models are designed to handle 

ordinal data.  Several polytomous models exist (e.g., Bock, 1972; Masters, 1982; Muraki, 

1990) which vary with respect to the assumptions made regarding response categories.  

The current research however, is based on Samejima’s (1969) graded response model 
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(GRM).  Samejima’s GRM has been used in past DFIT research and is one of the most 

commonly used polytomous models (Zickar, 2002), making it an appropriate choice for 

the current investigation.  Therefore this model will be described in detail in the section 

to follow.  Interested readers are referred to Ostini and Nering (2006) for further 

discussion on polytomous models.  

Samejima’s (1969) Graded Response Model.  Graded response models assume item 

response categories can be rank ordered, or in other words represent ordinal data (Zickar, 

2002).  Samejima’s (1969) GRM extends the 2-PL model to the polytomous case.  

 The GRM breaks polytomous data into multiple dichotomies, such that the 

number of dichotomies is equal to the number of response categories minus one.  A 5-

category item, for instance, is represented by four dichotomies, and ( )θ*P  is computed 

for each:   
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where ( )θ*
1P , ( )θ*

2P , and ( )θ*
3P  represent the probabilities of responding in or above the 

2nd, 3rd, and 4th response categories, respectively, and ( )θ*
4P represents the probability of 

responding in the 5th response category.  As shown in Equations 4-7, a five-category item 

is represented by one a-parameter and four b-parameters. The number of b-parameters for 

an item is always equal to the number of response categories minus one.  The relationship 

between θ  and ( )θ*P  for each dichotomy is illustrated by the boundary response 

functions (BRFs; see Figure 3). 

 Three things should be noted regarding the BRFs.  First, similar to the IRF, BRFs 

are monotonically increasing.  Second, because the item is represented by only one a-

parameter, the BRFs for an item never cross.  Finally, the b-parameters are always rank 

ordered such that b1 ≤ b2 ≤ b3 ≤ b4.  Related to the BRFs are the category response 

functions (CRFs).   

 The CRF for a given response category represents the probability of choosing that 

response category as a function ofθ .  This probability is equivalent to the difference 

between the probabilities of responding in or above category n and responding in or 

above category n+1.   The probability of responding to an item at all is set equal to one.   

As such, the CRFs are computed based on knowing the dichotomy probabilities defined 

above.  Equations 8-12 define the CRFs for a 5-category item. 

 

 

( ) ( )θθ *
11 1 PP −=         (8) 

( ) ( ) ( )θθθ *
2

*
12 PPP −=        (9) 



19 

 

 

( ) ( ) ( )θθθ *
3

*
23 PPP −=         (10) 

( ) ( ) ( )θθθ *
4

*
34 PPP −=        (11)   

( ) ( )θθ *
45 PP =          (12) 

 

 

So, ( )θ1P , ( )θ2P , ( )θ3P , ( )θ4P  and ( )θ5P represent the probability of choosing the 1st, 2nd, 

3rd, 4th and 5th response categories, respectively.  Again, there will be as many CRFs for 

an item as there are response categories (see Figure 4).   

Definition of the True Score.  Recall that in classical test theory the true score is 

operationally defined as the average observed score over an infinite number of test 

replications.  Although this value can never be known, an estimate of the true score for a 

set of dichotomously scored items is obtained by determining the number of correct 

responses.  Within IRT, estimation of the true score is not quite as simple. 

 As previously described, examinee responses to a set of items are used to estimate 

an ability score θ .  The scale of θ  is arbitrary, with values ranging from -∞ to∞ .  

However because ability is invariant with respect to the items and item parameters are 

invariant with respect to the sample, the θ -scale may be transformed provided the item 

parameter values are also transformed (Hambleton et al., 1991).  The most important 

transformation of the θ -scale is to the true score scale.   

 The true score is defined as the expected value of the score on a test.  For a 

dichotomously scored item, the expected score on an item for an examinee of a given 

level of ability may be defined as: 
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)()()0()()1()( θθθ iiii PQPXE =+= ,      (13) 

 

 

where i represents the item number, )(θiP  represents the probability of a correct response 

(i.e., the IRF) and )(θiQ  represents the probability of an incorrect response.  The 

expected value of a test score defined as the total number correct may then be expressed 

as: 

 

 

)()(
1
∑
=

=
n

i
iXET θ .                  (14) 

 

 

Equation 14 may be re-written such that: 
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where n represents the total number of test items.  That is, the true score of an examinee 

of a given ability level is equal to the sum of the IRFs.  This true score is commonly 

referred to as the test characteristic curve.  Because the value of ( )θiP  is between 0 and 
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1, T will range between 0 and n.  An important implication of this transformation is that it 

yields an estimate of the true score that is on a readily interpretable scale.  The same logic 

can be extended to determination of the true score for polytomously scored items.   

 Polytomous IRT yields multiple CRFs, and this information may be used to arrive 

at the expected item true score for an examinee of a given level of ability.  Following is a 

general equation for the item true score (Raju, Laffitte, & Byrne, 2002), assuming the 

response categories are scored 1, 2…m: 

 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )ii miimiiiii PmPmPPt +−+++= −121 1...21θ ,    (16) 

 

 

where 21, ii PP , etc. represent the probabilities of responding in a given response category, 

and the values 1 through m represent the response category scores or weights.  The total 

true score (i.e., expected test score function) can then be computed, such that: 
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where n again represents the number of items in the test, and i represents the item 

number.  In other words, Equation 17 indicates the total true score is equivalent to the 
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sum of the item true score functions.  DIF can be conceptualized in terms of comparison 

of the true score across groups.   

 One can compare the probability of answering an item correctly for examinees of 

the same level of ability across groups, and DIF occurs when this probability differs (i.e., 

when the probability of answering an item correctly depends not only on ability but also 

group membership).  Examination of DIF is essential in order to determine whether 

scores differences across groups are due to true differences in the trait or ability being 

measured, or to systematic measurement error related to group membership.  As 

mentioned previously, the use of tests or questionnaires containing DIF may result in 

costly or legally questionable decisions.  This analysis is therefore essential to the 

effective use of tests and questionnaires in practice.  Before comparison of true scores 

across groups is possible, however, parameter estimates for the focal and reference 

groups must be placed on a common metric in order for meaningful comparisons to be 

made.  Two methods for doing this are described next.   

Linking versus Concurrent Estimation.  Parameter estimates may be placed on a 

common metric using either linking or concurrent estimation procedures.  Using the 

former, parameters are independently estimated for different groups of examinees, thus 

requiring separate computer runs for each group.  During estimation a scale is arbitrarily 

assigned to theta, such that the mean is equal to zero and the standard deviation is equal 

to one.  The specific estimates obtained from these independent calibrations will 

therefore be different because the metric defined by each calibration is arbitrary.  

Therefore, estimates must be placed on a common metric, and this process is known as 

linking.  In other words, linking involves transforming the metric from the first 
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calibration to the metric of the second calibration.  The presence of biased items is known 

to distort computation of the linking coefficients (Millsap & Everson, 1993) and so 

iterative linking procedures are typically used. 

Using an iterative approach, linking coefficients are first computed based on all 

test items.  A DIF analysis is then conducted to identify items exhibiting DIF.  Using only 

the items deemed DIF-free from this previous step, second-stage linking coefficients are 

then computed.  These DIF-free items are referred to as the anchor items.  DIF analysis is 

then conducted again for all items using the second-stage linking coefficients, and items 

exhibiting DIF are identified.  While concurrent estimation also requires a set of DIF-free 

anchor items, an iterative process such as this is not used.  

Concurrent estimation combines data from both groups and simultaneously 

estimates item and ability parameters within a single computer run.  Using this approach, 

parameter estimates for at least one item must be fixed across groups.  This item (or set of 

items) is referred to as the anchor item (or anchor set) and links the metric for parameter 

estimation.  This ensures that all parameter estimates are on the same scale.  Using this 

approach, the anchor set is typically defined by items known to be DIF-free.  Different 

approaches to DIF analysis tend to use either linking or concurrent estimation.  For 

example, the LR test uses concurrent estimation procedures; while DFIT tends to use 

separate estimation with linking. 

Comparison of linking versus concurrent parameter estimation, however, suggests 

comparable recovery of item and ability parameters across methods (Hanson & Beguin, 

2002; Kim & Cohen, 2002). Based on these results, in the current study it is felt 

appropriate to apply concurrent estimation procedures to all DIF analyses.  Further, 
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although differences between linking and concurrent estimation are seemingly small, the 

use of linking versus concurrent estimation procedures across DIF analyses would still 

introduce a potential confounding variable into the research.  DIF analyses would be 

based on slightly different parameter estimates and this could potentially contribute to 

observed differences in test results.  Use of a common estimation method across DIF 

procedures strengthens the methodology by removing this potential confound.  Methods 

for examining DIF will be described next.     

2.3 Methods for Examining Differential Item Functioning (DIF) 

 Methods for examining DIF may be placed into two general categories: 

Unobserved conditional invariance (UCI) methods and observed conditional invariance 

(OCI) methods (Millsap & Everson, 1993).  UCI methods are based on assumed 

measurement models that relate an observed measure to the latent construct being 

assessed.  Bias is then examined by evaluating whether the measurement model remains 

invariant across populations.  IRT-based methods for examining DIF fall within this 

category.  OCI methods, on the other hand, do not attempt to relate an observed measure 

to the latent construct.  Instead, some other observed variable is used as a proxy for the 

latent construct.  For instance, the total test score may be used as a proxy for an 

examinee’s true ability.  Methods of assessing DIF rooted in classical test theory fall 

within this category.  Because such methods result in sample-dependent indices of DIF 

they are not as well suited to this purpose as the IRT-based methods (Hambleton et al., 

1991) and will therefore not be addressed in the current investigation.  Interested readers, 

however, may refer to Millsap and Everson for further discussion.   

Of interest to the current investigation are the IRT-based methods of examining 
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DIF.  Several IRT-based methods exist but all are rooted in the previously described 

measurement model relating the probability of a correct response, or in the case of 

polytomous IRT the probability of responding in a particular response category to a 

person’s true ability and other characteristics of the test item.  Further, all IRT-based 

methods require estimation of item parameters for each subgroup under investigation.  

Commonly, one group is referred to as the reference group, while the other is referred to 

as the focal group.  In the case of comparisons across ethnic groups, the group 

representing the majority is referred to as the reference group, and the group representing 

the minority is referred to as the focal group.  Statistically, DIF may be defined in terms 

of either the estimated item parameters or the item response functions (Hambleton et al., 

1991; Millsap & Everson, 1993), and different methods of examining DIF are rooted in 

these different definitions.       

Recall that IRT assumes item parameters are invariant across groups of examinees 

drawn from the same population (Hambleton et al., 1991).  One would therefore expect 

that item parameter estimates for the focal group would be identical to those for the 

reference group minus differences due to estimation error.  An item is said to exhibit DIF 

when the two sets of item parameter estimates are not the same (Hambleton et al.; 

Millsap & Everson, 1993).  Based on this definition, some IRT-based methods of 

examining DIF directly test the equality of individual item parameters across groups and 

finding of statistically significant differences provides evidence of DIF.    

Because item parameters dictate the shape of the item response function, 

differences in parameters between the focal and reference groups will result in 

differences in the item response functions.  Alternatively, then, an item may be said to 
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exhibit DIF when the item response functions are not identical across groups (Hambleton 

et al., 1991; Millsap & Everson, 1993).  Defined in this way, other IRT-based measures 

examine DIF by computing either the total area between item response functions or the 

average distance between item response functions over a selected interval of the ability 

continuum.  The greater the area or average distance, the greater the magnitude of DIF. 

Defining DIF in terms of the item response functions, however, is restrictive in 

the sense that it is only applicable to dichotomously scored items.  A more general 

definition suggests an item be considered to exhibit DIF when the item true score 

functions are not identical across groups (Cohen, Kim & Baker, 1993; Kim, Cohen & 

Park, 1995).  In the dichotomous case, the item true score function is identical to the item 

response function and so these two definitions are one in the same.  In the polytomous 

case, the item true score functions of the focal and reference groups will be identical 

when the boundary response functions are equivalent, or when the item parameter 

estimates are equivalent.  The IRT-based methods of examining DIF under examination 

in the current study will now be described in more detail. 

Likelihood Ratio Test.  The likelihood ratio (LR) test (Thissen, Steinberg, & Gerrard, 

1986; Thissen et al., 1988) examines the equality of item parameters between groups.  

DIF analysis using the LR method involves comparing a series of nested models, wherein 

item parameters are fixed or freed across groups.  One model is commonly referred to as 

the compact model, and all other models are referred to as the augmented models.  A 

separate augmented model is estimated for each studied item, and each item is tested one 

at a time for DIF.  Item parameters for each model are estimated using maximum 

likelihood estimation procedures, resulting in the likelihood value of model fit known as 
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the fit function (Meade & Lautenschlager, 2004).  The fit function is an index of how 

well the given IRT model fits the data as a result of the maximum likelihood estimation 

procedures used.  The fit of the nested models is simultaneously compared via the LR 

test.    

The LR is computed as follows: 
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LR = ,                  (18) 

 

 

where CL represents the likelihood function of the compact model and AjL  represents the 

likelihood function of the augmented model for studied item j.  Taking the natural log of 

this function results in a test statistic that is distributed as a chi-square,  

 

 

AjC LLLRdfG ln2ln2)ln(2)(22 +−=−== χ ,          (19) 

 

 

with degrees of freedom (df) equal to the difference in the number of item parameters 

estimated in the compact model versus the augmented model.  A significant 2χ value 

indicates the augmented model fits the data better than the compact model. The implied 

assumption here is that one of the models must fit the data.  It should also be noted that 
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this approach was made viable due to the development of concurrent estimation 

procedures, and another inherent assumption of this approach is that the anchor items are 

unbiased.       

 Different approaches to using the LR test exist that differ with regards to how the 

anchor items are defined.  Traditionally, in the compact model all item parameters are 

constrained to be equal across the reference and focal groups.  Estimation of the compact 

model provides a baseline likelihood value for item parameter fit for the model, and 

therefore this model is also referred to as the baseline model.  In each augmented model 

then, item parameters for the studied item are allowed to vary, while all other item 

parameter estimates are constrained to be equal across groups.  In other words, the set of 

anchor items is defined as “all other items” in the test or questionnaire. 

 An alternative approach is to identify a set of core items modeled to be DIF-free 

(Ankenmann, Witt, & Dunbar, 1999).  The core items serve as the common anchor items. 

Other researchers (e.g., Stark, Chernyshenko, & Drasgow, 2006; Wang & Yeh, 2003) 

have also used this approach varying the number of anchor items.  Using this approach, 

in the baseline model the designated anchor items are constrained to be equal across 

groups and all other item parameters are free to vary.  A separate model is then estimated 

for each item such that the studied item, in addition to the anchor items, is constrained to 

be equal across groups.  In other words, using this approach, the baseline model is now 

an augmented model in which item parameters are free to vary, and a separate compact 

model is estimated for each item.  Regardless of which of these approaches to defining 

the anchor items is used, estimation of each model yields a likelihood value of model fit, 

and LR values and test statistics are computed as in Equations 18 and 19.   
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Differential Functioning of Items and Tests.  The LR test (Thissen et al., 1986; Thissen 

et al., 1988) provides an item-level index of differential functioning.  It does not, 

however, provide a means by which to assess differential functioning at the test level.  It 

is simply assumed the removal of items with significant DIF will result in a test that is 

unbiased (Raju et al., 1995).  Raju et al. noted the desirability of having a psychometric 

measure of DTF and proposed the DFIT framework.   

 The DFIT framework was originally proposed for dichotomous items and was 

later extended to the polytomous case (Flowers et al., 1999).  Flowers et al. note the only 

difference between dichotomous and polytomous DFIT is in the computation of the item 

and test true scores.  Once these values are known, computations of indices of DIF/DTF 

are identical.   

 DFIT (Raju et al., 1995) begins by defining differential functioning at the test 

level and then decomposing it into differential functioning at the item level.  For a 

polytomously scored item, let )( sit θ represent the item true score for examinee s with 

ability levelθ on item i.  Assume the test consists of n items, and item parameters have 

been estimated separately for the focal group (F) and reference group (R).  Further 

assume these two sets of item parameters have been placed on a common metric.  We 

may then compute the item true score on the ith item for examinee s as a member of the 

focal group ( )[ ]siFt θ  and as a member of the reference group ( )[ ]siRt θ .  If )()( siRsiF tt θθ ≠ , 

then the item is said to exhibit DIF.  Recall, for polytomously scored items the test true 

score for a given examinee is equivalent to the sum of the item true scores.  Therefore, it 

is also possible to compute two test true scores: One treating the examinee as a member 

of the focal group ( sFT ) and one as a member of the reference group ( sRT ).   If sRsF TT ≠ , 
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the examinee’s true score is not independent of group membership; the test is said to 

exhibit DTF.  The greater the difference between these two true scores, then the greater 

the magnitude of DTF.   

   Raju et al. (1995) defined a measure of DTF at the examinee level 

as ( )2
sRsF TT − .  Across examinees, DTF may therefore be defined as follows: 

 

 

2)( sRsF TTEDTF −= ,        (20) 

 

 

where the expectation (E) may be taken over the reference group or the focal group.  

Assuming the expectation is taken over the focal group, Equation 20 may be rewritten 

such that: 

 

 

2)( sRsFF
TTEDTF −= .                   (21) 

 

 

If we let sD  represent the difference between the two true scores, then Raju et al. showed 

Equation 21 may be rewritten as follows: 
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where )(θFf is the density function of θ  in the focal group, and TFμ  and TRμ  represent 

the mean true score of examinees in the focal and reference groups, respectively. 

 Based on the definition of DTF offered in Equation 22, Raju et al. (1995) derived 

an index of compensatory differential item functioning (CDIF).  Equation 20 can be 

rewritten such that: 
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where isd  represents the difference between item true scores.  This can be rewritten as: 
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where ( )DdCov i ,  represents the covariance between the difference in item true scores 

and the difference in total test true scores, 
idμ  represents the mean difference in item true 
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scores, and Dμ  represents the mean difference in test true scores.  From this, CDIF is 

defined as: 

 

 

( ) ( ) Ddiii i
DdCovDdECDIF μμ+== , .     (25)     

 

 

 The CDIF index has several advantages over other measures of DIF.  First, the 

CDIF index is additive such that differential functioning at the test level is equal to the 

sum of the differential functioning at the item level.  In other words,  
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This index is also compensatory in the sense that it takes into account compensating bias 

across items.  The CDIF index may yield either a positive or negative value indicating an 

item to be in favor of either the focal or the reference group.  Practically speaking, this 

means that if one item favors one group while another item favors the other group, the 

bias present in these items may cancel each other out.  As such, the items together may 

not contribute to DTF.  These properties of the CDIF index allow practitioners to gain a 

sense of each item’s contribution to DTF and aid in decisions regarding which items to 
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delete in order to have the largest overall impact on reducing DTF.    

  The DFIT framework (Raju et al., 1995) further offers an index of 

noncompensatory differential item functioning (NCDIF).  NCDIF is non-directional, 

meaning it does not take into account compensating bias across items.  The NCDIF index 

instead reflects only the differential functioning of the item under review.  In essence, it 

is assumed all other items in a test are DIF-free.  Based on this assumption, it must be 

true that 0=jd  for all j items, where ij ≠ .  Equation 25 may then be rewritten as: 

 

 

222
ii ddii EdNCDIF μσ +== .       (27) 

 

 

This means items with significant NCDIF do not necessarily have significant CDIF (Raju 

et al.).  If one items favors the reference group and another favors the focal group, both 

items will have significant NCDIF while CDIF indices may not be significant due to 

cancellation at the test level.  If the assumption that no other items in the test exhibit DIF 

is true, the values obtained for NCDIF and CDIF will be equal.  Further, NCDIF will 

equal zero when the item parameters for item i are identical across the focal and reference 

groups.   

It is worth mentioning that in addition to cancellation at the test level, Flowers et 

al. (1999) note polytomous response data allows for cancellation within an examinee at 

the item level.  In the polytomous case, multiple probabilities (i.e., BRFs) are computed 

for each item, and these are combined to arrive at the item true score.  So, for a given 
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examinee, one response category can cancel the effects in another category when 

computing the difference between item true scores.  For example, for a given item if the 

probability of responding in Category 1 is greater for the reference group than it is for the 

focal group and vise versa for Category 2, these differences will cancel each other out 

and the item true score difference will remain close to zero. This indicates no differential 

functioning at the item level within an examinee. 

Raju et al. (1995) recommended significance tests to be used with the DFIT 

indices.  Beginning with DTF, if we assume that sD  is normally distributed with a mean 

of Dμ  and a standard deviation of Dσ  a z-score can be computed for examinee s as 

follows: 
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2
sZ  is known to have a 2χ  distribution with one degree of freedom.  The sum of 2

sZ  

across N examinees has a 2χ distribution with N degrees of freedom: 
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Under the null hypothesis of no DIF, Dμ  = 0.  Substituting 0=Dμ  into Equation 29 

yields: 
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According to the definition of DTF provided in Equation 22, Raju et al. indicate Equation 

30 can be expressed as: 
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If we substitute a sample-based estimate for the variance of D , then 
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A significant 2χ value indicates one or more items function differentially (i.e., there is 

significant DTF).  Because CDIF indices sum to DTF, one may use this information to 

then identify the items causing the significant 2χ .  Raju et al. (1995) recommended 

deletion, one at a time, of items with large, positive CDIF values.  Following deletion of a 

single item, the 2χ test of DTF is re-computed based on the remaining items.  This 

process is repeated until DTF becomes nonsignificant.  When one deletes an item, 

however, not only is the CDIF of that item removed from the DTF index but also its 

contribution to other CDIF indices (Raju, 1999a).  Therefore, identification of the item 

with the largest CDIF may not be the best strategy for identifying an item for deletion.  

Raju recommended computing A = 2CDIF – NCDIF for each of the items in a test and 

removing the item with the largest A value.  Regardless of the strategy used, deleted 

items are labeled as having significant CDIF, and therefore no separate significance test 

of the CDIF index was proposed.   

 Raju et al. (1995) did propose a 2χ test similar to the one for DTF for testing the 

significance of NCDIF: 
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Monte Carlo examination of the proposed indices suggested the 2χ tests for DTF and 

NCDIF to be overly sensitive for large sample sizes (Fleer, 1993). 
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 In theory, DTF and NCDIF indices are defined in terms of true item and person 

parameters.  In practice, however, these values are not known.  One must compute 

estimates of DTF and NCDIF based on estimated item and person parameters.  As a 

result, the estimates of DTF and NCDIF used in practice have two distinct sources of 

error:  Sampling error resulting from drawing a sample from a population of examinees 

and estimation error resulting from the estimation of parameter values (Raju et al., 1995).  

The proposed 2χ significance tests do not fully account for the error associated with the 

estimation of parameter values (Fleer, 1993; Raju et al.).  According to Raju et al., when 

using estimated parameter values in the computation of DTF and NCDIF it is highly 

unlikely 0=sD  for all examinees, even when there is no differential functioning (i.e., the 

null condition).  Therefore, in a simulated no-DIF condition, one would expect some 

items to be falsely identified as exhibiting DIF due to this error.  Specifically, with an 

alpha level of .01, one would expect 1% of items to be falsely identified as exhibiting 

DIF.   In Fleer’s no-DIF condition, though, the proportion of items falsely identified as 

exhibiting DIF was substantially greater than 1%.  This finding highlighted the fact that 

with large sample sizes the proposed 2χ tests will tend to be statistically significant even 

when the observed NCDIF values are extremely small, resulting from error and not 

reflecting DIF.  Items that do not function differentially across groups will thus be falsely 

identified as exhibiting DIF.  This suggested the need to establish empirically derived 

cutoff values for the DTF and NCDIF indices.  These cutoff values provide a means to 

identify findings of differential functioning that are not only statistically significant but 

also practically nontrivial. 

 Cutoff values were established by creating a frequency distribution of observed 
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NCDIF values across 50 replications of the no-DIF condition (Fleer, 1993).  That is, for 

50 separate no-DIF data sets, item and person parameters for the focal and reference 

groups were estimated and linked to a common metric.  For each of the 50 pairs of 

parameter estimates, NCDIF was then computed.  The resulting 50 values of NCDIF 

were rank ordered to identify the value of NCDIF associated with the 99th percentile.  A 

cutoff value of .006 was associated with the 99th percentile and so resulted in falsely 

identifying approximately 1% of items as exhibiting DIF.  Based on this result from 

Fleer’s Monte Carlo study, Raju et al. (1995) recommended items with NCDIF > .006 

and a statistically significant 2χ  be designated as exhibiting DIF; DTF > .006 and a 

significant 2χ suggests differential functioning at the test level.  Using the recommended 

cutoff value, subsequent analysis of this data (Fleer; Raju et al.) provided support for the 

DFIT framework and showed it to produce results comparable to other available 

measures of DIF.   A separate Monte Carlo investigation (Chamblee, 1998) extended 

these results.    

 Chamblee (1998) manipulated the IRT model used to generate dichotomous item 

data, as well as the sample size.  Recommended cutoff values associated with the 95th, 

99th, 99.5th, and 99.9th percentiles were identified from the distribution of NCDIF values 

obtained across 50 replications.  Interestingly, Chamblee did not replicate the cutoff value 

recommended by Fleer (1993).  Tables of empirically derived cutoff values across 

simulated conditions and alpha levels were provided.   It is interesting to note the cutoff 

values obtained from the distribution of observed NCDIF values ranged from .003 to 

.018.  Whereas Fleer recommended a cutoff value of .006, under the same conditions, the 

results of Chamblee suggested a cutoff value of .008.  Findings further suggested that as 
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sample size increases and the number of parameters in the IRT model decreases, 

recommended NCDIF cutoff values tend to become smaller.  In summary, this study 

supported the idea that optimal cutoff values are related to sample size and the specific 

IRT model used in the investigation and suggests that cutoff values may not be 

generalizable across data sets.  Subsequent research seeking to establish recommended 

cutoff values for polytomous data (Flowers et al., 1999; Raju, 1999b) echoes this 

concern. 

 Based on the cutoff values established for dichotomous data, Raju (1999b) 

provided a strategy for identifying cutoff values for polytomous data that does not require 

an extensive Monte Carlo investigation.  For an item with k response-categories, the item 

true scores vary between 1 and k.  This polytomous 1-k scale may be transformed into a 

dichotomous scale, where item true scores vary between 0 and 1 using a transformation 

originally proposed by Raju, Burke and Normand (1990).  According to Raju et al., the 

item true score on the 0-1 scale ( *t ) is computed as follows: 
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where t represents the item true score on the 1-k scale and k represents the number of 

response categories.  The item true score difference may be written as: 
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Based on Equation 27, the NCDIF index associated with the 1-k scale may be computed 

as: 
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where *
iNCDIF represents the index associated with the 0-1 scale and iNCDIF represents 

the index associated with the 1-k scale.  Raju (1999b) suggested using the previously 

established .006 cutoff value for *
iNCDIF .  As such, the NCDIF cutoff for an item with k 

response categories is equal to )006(.)1( 2−k .  Using this equation, the recommended 

cutoff for a 5-category item, for example, is .096.  Raju (1999c) suggested this procedure 

may be conservative in assessing instances of practically significant DTF, however.  In 

other words, this cutoff may suggest practically nontrivial DTF too often.  Separate 

cutoffs for DTF were subsequently recommended. 

 According to Raju (1999c), a proposed cutoff for DTF should take into account 
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the NCDIF cutoff for a single item as well as the number of items in the test: 

 

 

DTF Cutoff = n (NCDIF Cutoff),       (38) 

 

 

where n represents the number of items in the test.  Using Equation 38, the proposed 

cutoff for a 10-item dichotomously scored test would be 10 (.006) = .060, and the 

proposed cutoff for a test with 10 five-response category items would be 10 (.096) = .960.  

Empirically derived cutoff values yield different recommendations (Flowers et al., 1999; 

Meade et al., 2006). 

 Based on simulated data using Samejima’s (1969) graded response model, 

Flowers et al. (1999) recommended a cutoff value of .016 for a 5-category item (α = .01).  

This same cutoff value is used in assessing NCDIF and DTF.  Also for a 5-category item, 

Meade et al. (2006) recommended cutoff values ranging from .006 to .0115 depending on 

sample size, and Bolt (2002) recommended cutoffs ranging from .009 to .010 depending 

on sample size and group differences in ability.  As can be seen, these values are all 

substantially smaller than the cutoff values suggested using Equations 37 and 38. This 

again demonstrates that cutoff values may not generalize well across situations.  Bolt 

(2002) also noted inflated Type 1 errors on individual items and stated there may be need 

for caution in applying the same empirical cutoff across all items in a test.     

 This dilemma concerning appropriate cutoff values for NCDIF and DTF indices 

poses an obstacle to using the DFIT framework in practice.  Using Monte Carlo methods, 
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researchers have achieved success in generating cutoff values (Bolt, 2002; Flowers et al., 

1999; Raju et al., 1995) that are appropriate for the specific conditions simulated in a 

given study.  Based on these Monte Carlo investigations, there seems to be general 

support for the DFIT framework as a viable means for detecting differential functioning 

at the item and test levels.  These cutoff values, however, are most likely not 

generalizable to other conditions found in practice.  In determination of appropriate 

cutoff values, one may need to consider the effects of various combinations of factors, 

such as test length, sample size, IRT model, and the method of linking (Chamblee, 1998), 

that are likely to be found in practice.  This is discouraging from a practical standpoint 

because typical practitioners may not have the expertise or time to produce empirically 

derived cutoff values using simulated data.  As such, in practice Equations 37 and 38 

have proven useful because they do not necessitate conducting a Monte Carlo study.  

Unfortunately these values are also not likely to be optimal for the above reasons.  As 

such, across the literature, there has been a call for better procedures for assessing the 

statistical significance of DIF and DTF indices (Bolt, 2002; Flowers et al., 1999; Raju et 

al., 1995).  In response to this call, Oshima et al. (2006) proposed the item parameter 

replication (IPR) method.   The IPR method will be discussed in the pages to follow; 

however, it is first important to discuss how the above IRT based methods for examining 

DIF/DTF compare. 

2.4 Comparison of the DFIT Framework and LR Test 

 Recent research (Bolt, 2002; Braddy et al., 2006; Meade & Lautenschlager, 2004), 

has shown interest in comparison of the DFIT framework and LR test.  Given the current 

attention being given to these two methods, the LR test was chosen for comparison 
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purposes in the present study.    

  Prior research comparing DFIT and the LR test has concluded the LR test is more 

sensitive to detecting DIF than is the DFIT framework.  For example, Meade and 

Lautenschlager (2004) compared these approaches using simulated 6-item, polytomous 

response data across three conditions of sample size (150, 500, and 1000) and three 

amounts of DIF (0, 2, or 4 items).  The .096 fixed NCDIF cutoff proposed by Raju 

(1999b) was used as the criterion for DIF.  Across conditions, results suggested DFIT 

tended to be more conservative and rarely identified items as exhibiting DIF.  Subsequent 

research has also found the LR test to be more sensitive to detecting DIF (Bolt, 2002; 

Braddy et al., 2006), particularly with larger sample sizes.  As Braddy et al. point out, this 

result is not surprising when one considers the different decision rules these two methods 

use for detecting DIF. 

 The LR test uses a chi-square distribution to examine the statistical significance of 

differences in item parameters.  The chi-square statistic is known to show increased 

power at larger sample sizes.  DFIT, on the hand, considers practical significance via the 

use of cutoff scores.  In fact the reason Raju et al. (1995) incorporated the use of cutoff 

values into the DFIT framework was to address the over sensitivity of the chi-square tests 

to DIF.  Use of this decision rule therefore increases the amount of DIF needed in an item 

before the item should be considered to exhibit DIF (Braddy et al., 2006).  As a result, 

items containing a small amount of DIF may not be detected using DFIT.  If this small 

amount of DIF is not practically significant, this is not problematic.  However, if 

practically significant DIF is not detected due to the use of an inappropriate cutoff value 

for the given data, this may be problematic to the extent that such items are used in tests 
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and questionnaires and impact decisions made based on these measures.     

 Considering this, along with the difficulty in establishing appropriate empirically 

derived cutoff values, it would seem DFIT may not be advantageous from a practitioner’s 

stand point.  Introduction of the IPR method, however, once again provides a means for 

examining the statistical significance of DIF.  Further, it gives practitioners a means of 

generating cutoff values that is easy to use in practice and allows for different cutoff 

values across items.  This may increase the sensitivity of DFIT relative to the LR test.  It 

is therefore important to reassess the efficacy of these two methods in light of these 

advances to DFIT.  The IPR method will now be described in detail. 

2.5 The Item Parameter Replication (IPR) Method  

 The IPR method (Oshima et al., 2006) provides a means for deriving study-based 

cutoff values for use in assessing differential functioning within the DFIT framework.  

This approach is different from the earlier approach in that the cutoff values established 

using the IPR method focus solely on testing statistical significance, whereas the earlier 

approach focused on practical significance. Both are important but might be considered 

separately.   

 The IPR method begins with estimates of item parameters and their variances and 

covariances.  The item parameters and variances can be obtained from the output of an 

IRT calibration program, such as PARSCALE or MULTILOG.  Unfortunately the 

covariances among item parameters are not available as part of the standard output.  

These values, however, can be derived using available information.  Based on these 

initial estimates, a large number of replications of item parameters are then generated 

with the restriction that the expectation of the newly generated item parameters equals the 
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initial estimates of item parameters with the same variance and covariance structure.  

That is, any differences in the sets of estimates must be due to sampling error.  This new 

method consists of nine major steps that will be described here for a single polytomous 

item i.  The IPR method is identical for all items in a test. 

1. Let the item parameter estimates be denoted by a column vector iM .  In the 

case of Samejima’s (1969) GRM, a polytomous item with five response 

categories will be represented by one a-parameter and four b-parameters.  

Therefore, iM  will consist of five elements: 

 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

4

3

2

1

i

i

i

i

i

i

b
b
b
b
a

M .        (39) 

 

 

Each item is also associated with a matrix consisting of the sampling 

variances and covariances of the item parameter estimates.  Let this be 

represented as:  
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The correlation matrix ( iR ) for the item parameters can then be derived 

from iV : 
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Assuming iR  is positive definite, it can be expressed as the product of a 

triangular matrix ( iT ) and its transpose ( '
iT ) (Graybill, 1969). This is the 

Cholesky decomposition (Press, Flannery, Teukolsky, & Vetterling, 1992): 
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2. Let m represent the number of response categories.  Let iX 1  represent a 

column vector of m elements, with each element drawn at random from one of 

m independent, standardized, and normally distributed populations.  Let iX 2  

represent a second vector of m elements similarly drawn.  

3. Using the iT  matrix in Equation 42, transform the two X vectors into two Z 

vectors as follows: 
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iii XTZ 2
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2 = .        (44) 

 

 

Each Z vector now represents a random element from an m-dimensional 

standardized multivariate normal distribution with a correlation structure for 

the m dimensions conforming to the correlation structure in the iR  matrix. 

4. By definition, each element in the Z vectors is standardized in that its 

expectation and variance are 0 and 1, respectively.  Each Z vector is now 

transformed to a Y vector so that the elements in the new vector will have the 

appropriate mean and variance as shown in the iM and iV  matrices above.  To 

achieve this transformation, let iD  represent a diagonal matrix consisting of 

the variances contained in iV .  Now, let 

 



48 

 

 

iiii MZDY += 11 ,        (45) 

iiii MZDY += 22 .       (46) 

 

 

5. Vectors iY1  and iY2  represent two estimates of item parameters from two 

populations with identical item parameters.  In other words, these vectors may 

represent item parameter estimates for the focal and reference groups when 

there is no DIF.  Any differences in these estimates must be due to sampling 

error.  Therefore, an NCDIF index for item i can be obtained with the help of 

the two Y vectors and the estimates of thetas for the focal group using the 

equations previously described. 

6. Steps 1-5 can be replicated as many times as desired. 

7. NCDIF values obtained from all replications can be rank ordered, and the 90th, 

95th, 99th, 99.5th and 99.9th percentile rank scores are recorded to establish the 

cutoff values for alpha levels at .10, .05, .01, .005 and .001, respectively.   

8. Once the alpha level is chosen, the cutoff associated with it is used as the 

cutoff for assessing statistical significance of the initial NCDIF value obtained 

for item i.   

9. This process is repeated for all items in the test, thus potentially resulting in 

different cutoff values for different items.   

 Oshima et al. (2006) note several distinctions between the new IPR method and 

the method used to generate cutoff values in previous research (e.g., Bolt, 2002; Fleer, 

1993; Flowers et al., 1999; Raju et al., 1995).  First, a large number of replications of 
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item parameters are generated from the initial set of estimates obtained from the IRT 

calibration program.  This eliminates the need for extra calibrations of item parameters, 

which is one of the most time consuming aspects of the previous method.  Further, this 

offers a theoretical advantage in the sense that it is tailored to a particular dataset.  As 

such, other unknown factors that may influence the error associated with parameter 

estimation are taken into account.  Second, the distribution of NCDIF values is obtained 

for each item on a test and so it is possible to generate a cutoff value for each item.  

Lastly, the IPR method is easier to use from a practitioners standpoint because the 

procedure is implemented within a computer program.  The only task practitioners have 

is to provide estimates of item parameters, their variances and covariances, and ability 

estimates for the focal (or reference) group. Providing this information is something one 

would need to do anyway to conduct a DFIT analysis.  A Monte Carlo study was 

conducted to examine the efficacy of the IPR method in generating cutoff values for 

dichotomous items (Oshima et al.) 

 Oshima et al. (2006) manipulated the IRT model used to generate the simulated 

data, the proportion of test-wide DIF, the presence of uniform versus nonuniform DIF, 

and sample size.  Further, ability distributions for the reference and focal groups were 

simulated to reflect conditions of matched ability and impact (i.e., the mean theta in the 

focal group was .50 standard deviations below the reference group).  NCDIF cutoff 

values were obtained from 1,000 replications.  Overall results suggest the IPR method 

performed well and provides a practical means of assessing differential functioning 

within the DFIT framework.  Obtained IPR-based NCDIF cutoff values ranged 

from .0026 to .0118.  The proposed cutoffs tended to be larger with smaller sample sizes, 
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as well as shorter test lengths.  Further, more parameters in the IRT model, as well as 

larger standard errors of the item parameters resulted in larger cutoff values.  Results 

further suggested the new IPR method outperforms the previously proposed cutoff (.006). 

 Looking at a condition with 40-items, a sample size of 1,000, and 10% DIF, the 

new method was able to correctly identify all DIF-items and did not incorrectly identify 

any non-DIF items (Oshima et al., 2006).  The old cutoff (.006) missed one DIF item.  

This again emphasizes the need for study-based cutoff values and supports the IPR 

method.  Research is needed to examine the IPR method for use with polytomous data.   

2.6 Summary and Statement of Purpose 

 The IRT framework is well suited to detecting differential functioning of items or 

tests across sub-populations because of the property of invariance.  That is, estimates of 

item characteristics are independent of the group of examinees, and estimates of 

examinee ability are independent of specific test items.  As such, researchers have 

proposed several IRT-based methods for examining DIF.  Two such methods under 

investigation in the current study are the DFIT framework (Raju et al., 1995) and LR test 

(Thissen et al., 1986; Thissen et al., 1988).   

 The DFIT framework offers several advantages to other DIF detection methods 

(Flowers et al., 1999).  First, it offers a means by which to assess differential functioning 

at both the item and test-levels.  Second, this method can be applied to both dichotomous 

and polytomous data, as well as unidimensional and multidimensional data.  Third, DFIT 

offers two indices for assessing DIF: NCDIF and CDIF.  Use of the NCDIF index 

assumes all items in the test except for the item under consideration contain no DIF (Raju 

et al., 1995).  Although this assumption is commonly made by other measures of DIF as 
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well, it may not be plausible.  CDIF, on the other hand, does not make this assumption.  

CDIF is additive in the sense that DTF equals the sum of the CDIF indices across the 

items in a test.  This is advantageous in the sense that it provides a means by which to 

assess the overall effect of removing an item from a test.   

Although the DFIT framework has been shown to be an effective mechanism for 

detecting DIF/DTF in IRT-based tests and questionnaires (e.g., Flowers et al., 1999; 

Oshima et al., 1997; Raju et al., 1995), researchers have indicated a need for better 

procedures for assessing the statistical significance of DIF and DTF indices.  As a 

possible solution to this problem, Oshima et al. (2006) recently proposed the IPR method 

for determining NCDIF cutoff values for dichotomous items within the DFIT framework.  

A Monte Carlo investigation by Oshima et al. showed the IPR method is effective in 

maintaining acceptable Type 1 error and power rates.  Although Raju et al. (2006) have 

described how the IPR-based NCDIF significance test extends to polytomous data, 

empirical research has been limited in scope.  Fortmann et al. (2006) found support for 

the IPR method with polytomous data, but this was based on examination of just one 

condition of DIF.  The first purpose of this study is to conduct a more comprehensive 

assessment of its efficacy in detecting DIF for polytomous items compared to previously 

recommended fixed cutoff values. Specifically, the following hypotheses are made: 

Hypothesis 1: The IPR-based NCDIF test is more likely to detect true DIF than 

the NCDIF test with previously recommended fixed cutoffs. 

Hypothesis 2: The IPR-based NCDIF test will have false positive rates close to 

the nominal significance level. 

Further, the IPR method is compared to the LR test (Thissen et al., 1986; Thissen et al., 
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1988).  The LR test was chosen for comparison purposes because there has been growing 

interest in the recent literature on the use of these two procedures (Bolt, 2002; Braddy et 

al., 2006; Meade & Lautenschlager, 2004).  This research has suggested the DFIT 

framework is less sensitive to detecting DIF than the LR test.  It is important to note, 

however, that this result is based on the use of a fixed cutoff value across items.  With the 

introduction of the IPR method to the DFIT framework, different NCDIF cutoff values 

may be derived across items and then used to examine statistical significance.  This leads 

one to question whether previous conclusions regarding the sensitivity of the DFIT 

framework in comparison to the LR test remain true.  Specifically, this research will 

address the question is true DIF more likely to be detected using the LR test or the IPR-

based NCDIF test?  Factors influencing each statistic’s ability to detect DIF will also be 

examined. Since these aspects of the study are designed to be exploratory in nature, no 

formal hypotheses are stated.    
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CHAPTER 3 

METHOD 

 
3.1 Overview of the Monte Carlo Methodology 

 Monte Carlo research methods have become the preferred approach in DIF 

research aiming to assess the accuracy of different DIF detection methods.  In this 

approach, data sets are simulated under a specified IRT model by generating examinee 

responses to a pre-determined number of test items using parameters obtained from either 

previously analyzed empirical test data or randomly selected computer generated 

distributions.  Data sets are simulated for both a reference and focal group.  The 

simulated data is then subjected to DIF analysis. This process is repeated many times to 

simulate the performance of the statistical test over repeated experiments.  

The use of simulated test data in the current research application is highly 

desirable for two reasons.  First, in DIF analyses conducted based on empirical test data it 

is not possible to know how many items are truly biased because true item parameters are 

not known.  Using the estimated parameter values DIF analyses are conducted, but the 

results of this analysis only allow one to assess the degree of congruence across DIF 

detection methods.  It is not possible to know if any of the methods accurately identified 

true DIF items.  With Monte Carlo methods, on the other hand, the researcher knows the 

true item parameters that were used to simulate the data and thereby controls which items 

contain DIF.  This allows one to compare the results of the DIF analysis to the true 

characteristics of the data.  As a result, one can assess both the accuracy of a single DIF 

detection method and compare the congruence across methods.  Second, Monte Carlo 

methods allow the researcher to manipulate other characteristics of the data as well, such 
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as sample size.  One can then examine the factors moderating a statistics ability to detect 

DIF.   

 The Monte Carlo approach is not without limitations however.  First, the data 

simulated is unrealistically clean.  For example, it can be simulated to represent perfect 

unidimensionality, while in practice, test and questionnaire data is seldom perfectly 

unidimensional.  In other words, while there may be one dominant factor being measured, 

there are often other factors accounting for some degree of the variability in performance.  

This provides reason to question whether results from Monte Carlo IRT analyses can be 

generalized to real test data containing mild violations of the statistical assumptions.  

Second, because the researcher determines what characteristics of the data to manipulate, 

it is possible the conditions tested are not realistic to practice.  It is therefore important 

one models realistic situations.  If not, this causes further concern regarding the 

generalizability of results.   In the current research application, the strengths of this 

approach are felt to outweigh these limitations.  

 Because this study aims to assess the efficacy of the IPR methodology within the 

DFIT framework, a Monte Carlo research design is necessary as it provides the only 

means possible to identify true DIF items and measure the accuracy of DIF detection. 

Further, the conditions chosen for inclusion in this study were selected to represent 

conditions commonly found in practice, thereby minimizing this potential limitation. 

3.2 Data Simulation  

 Polytomous item response data was generated based on Samejima’s (1969) GRM 

using a Fortran 90 program developed for this purpose.  Item parameters used to simulate 

the data were adapted from Flowers et al. (1999). Modifications to the parameters used 
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by Flowers et al. were made to avoid instances of extremely low response frequencies in 

the top two response categories. The modified item parameters are depicted in Tables 1 

and 2.  These items represent a wide range of magnitudes of DIF, as indicated by the true 

NCDIF values in Table 2.  True NCDIF was computed according to Equation 27 using 

the known population parameters for each item, assuming an ability distribution with 

mean equal to zero and standard deviation equal to one. 

  To begin data simulation, the true ability of N examinees was generated from a 

normal distribution with mean and standard deviation specified by the condition.  Ability 

scores were then generated using the International Mathematical and Statistical Library 

(IMSL; 1984) pseudo-random number generator DRNNOR.  Next, a probability 

distribution was generated for each examinee on each item, indicating the probability of 

responding in each response category.  The probability distribution was generated as a 

function of ability according to Samejima’s (1969) GRM, using the item parameters 

specified by the condition.  Based on this probability distribution, a random response was 

then generated for each examinee for each item using the IMSL DRNGDT routine. 

In Monte Carlo DIF research, multiple replications of the data are simulated for 

each condition of the study.  DIF analyses are then conducted separately for each 

replication of the data and results are averaged across replications to arrive at an overall 

index of accuracy for each condition.  In the present study, each condition was replicated 

100 times.  This number of replications is consistent with much previous research (e.g., 

Bolt, 2002; Cohen, Kim & Wollack, 1996; Kim & Cohen, 1998b; Meade et al., 2006) and 

marks the maximum number of replications found in previous research. 
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3.3 Manipulated Factors 

The current investigation included two sample sizes (500 and 1,000).  Sample size 

was equal across the reference and focal groups.  These sample sizes were chosen to 

replicate those used by Fleer (1993) and Raju et al. (1995).  The smaller sample size 

reflects the minimum sample size recommended for accurate recovery of item parameters 

in the GRM (Ankenmann & Stone, 1992; Reise & Yu, 1990).  A sample size of 1,000 is 

thought to represent a fairly large sample size relative to what is typically found in 

practice.  

Past research suggests test length has minimal to no effect on DIF detection errors 

(Chamblee, 1998; Flowers et al., 1999; Oshima et al., 2006). Therefore, test length was 

held constant at 40-items, representing a moderate test or questionnaire length (Fleer, 

1993).  All items consisted of five response categories.   

Further, to assess the effect of group differences in theta levels (impact) on 

detection of DIF, two different θ  distributions were simulated for the focal group.  In the 

first condition the focal and reference groups were sampled from populations with equal 

θ  distributions.  Specifically, they were randomly sampled from a normal distribution 

with mean equal to zero and standard deviation equal to one [N(0,1)].  This condition is 

referred to as the no impact condition.  In the second condition, the impact condition, the 

focal group was sampled from a normal distribution with mean equal to negative one and 

standard deviation equal to one [N(-1,1)].  This resulted in the focal group having lower 

θ  values than the reference group and reflects the size of the Black-White racial group 

difference (one standard deviation) commonly found on tests of general cognitive ability. 

The generating item parameters (Flowers et al., 1999) result in simulating four 
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proportions of test-wide DIF (0%, 5%, 10%, and 20%) and two conditions of direction of 

DIF (Unidirectional and Balanced-Bidirectional).  DIF was modeled by adding a constant 

to the a and/or b parameters of the focal group. The differences between focal and 

reference group item parameters (computed as focal group value minus reference group 

value) are presented in Table 2.  So, for the 40-item test, 0, 2, 4, or 8 items were 

embedded with DIF.  In the unidirectional conditions all items favored the reference 

group.  In the balanced-bidirectional conditions, items favoring the reference group were 

balanced with items favoring the focal group.  The parameters used further resulted in 

items generated to simulate uniform DIF ( iFiR aa = and iFiR bb ≠ ) and nonuniform DIF 

( iFiR aa ≠ , either with iFiR bb ≠  or iFiR bb = ).  Nonuniform DIF items were only 

embedded in the 20% DIF condition.  Figure 5 illustrates the simulation design.  This 

resulted in 28 conditions.  Each condition was replicated 100 times, resulting in 2,800 

datasets per group.   

3.4 Data Analysis  

Parameter Estimation.  Concurrent estimation of item and ability parameters for the 

reference and focal groups using Samejima’s (1969) GRM was completed prior to DFIT 

and LR DIF analyses.  Parameters were estimated using marginal maximum likelihood 

estimation as implemented within the software package MULTILOG (Thissen, 1991).  A 

prior distribution, with mean equal to zero and standard deviation equal to 1.5, was 

imposed on the b-parameters.  The prior distribution was set such that all plausible 

parameter values were included within 3 SDs of the mean.  Four known non-DIF items 

(Items 1, 11, 21, and 31) were chosen as anchor items and linked the metric for parameter 

estimation.  The four anchor items were chosen to represent a range of a- and b-
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parameter values. 

 The number of anchor items is a topic that has received much attention in the 

literature, particularly as it relates to the LR test. Traditionally, one item is studied at a 

time and all other items serve as the anchor set.  According to Wang and Yeh (2003) 

however, the appropriateness of this approach, in terms of power and Type 1 error, 

decreases as the average signed area between groups (i.e., DIF) increases. Their results 

supported use of 1, 4, or 10-anchor items over the “all other items” approach.  Stark et al. 

(2006) recommended use of a single anchor item and also found this to be more effective 

in detecting DIF than the “all other items” approach.  Other research has shown that the 

recovery of item parameters from concurrent estimation becomes more accurate as the 

number of anchor items increases (Kim & Cohen, 1998a, 2002).  Similarly, the power of 

DIF detection is higher with larger numbers of anchor items (Wang & Yeh).  Therefore, 

we decided to use four anchor items.  Four anchor items allowed reasonable parameter 

recovery and DIF detection (Wang & Yeh), while still maintaining a decent number of 

studied items (36). 

DFIT.  Parameter estimates used for DFIT analyses were taken from the compact (or 

baseline) model of each replication of each condition.  The standard MULTILOG output 

provides only the parameter estimates and their standard errors, and does not provide the 

parameter covariances required for the IPR method. Asymptotic estimates of the 

covariance matrix of IRT parameter estimates were obtained from the inverse of the 

Fisher Information matrix, however.  A Fortran program computed parameter 

covariances using the method described in Li and Lissitz (2004) and Morris, Fortmann, 

and Oshima (2007).   
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The information matrix is equal to -1 times the expected value of the Hessian (i.e., 

the matrix of second partial derivatives) of the likelihood function.  For a 3-category 

polytomous model, the information matrix would have elements corresponding to the a-

parameter and 2 b-parameters, e.g. 
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Let Pk be used as shorthand for the item response function indicating the 

probability of a response in category k as a function of ability (θ) and a set of item 

parameters ξ, and let Qk = 1-Pk.  Li and Lissitz (2004) show that, for a m-category 

polytomous model, the element of I related to any two parameters ξs and ξt is given by, 
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A numerical approximation of the integral can be computed by the Gauss-Hermite 

quadrature, 
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where Xq is one of Q quadrature points, A(Xq) is the associated quadrature weight, and Pkq 

represents the item response function evaluated at θ=Xq. 

The derivatives of the boundary response functions with respect to a and bk are 

given by: 
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The category response function is the difference between two adjacent boundary response 

functions, 
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Therefore, the derivatives of the category k response function are 
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The derivatives will be 0 for all other boundary location parameters (e.g., bk+1). 

Substituting these values for the derivatives in Equation 49 yields, 
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For non-adjacent categories (j not equal to 1), I(bk,bk+j) = 0.  The covariance matrix is 

then found by taking the inverse of I. 

DFIT analyses were then conducted using the DFIT7 (Raju, Oshima, & Wolach, 

2005) program which provides NCDIF values for all items using Equation 27.  Cutoff 

values for NCDIF were generated utilizing the IPR method.  As previously described, the 

IPR method generates a large number of replications of item parameters.  NCDIF values 

obtained from all replications are rank-ordered, and the 99th percentile rank score 

establishes the cutoff value for an alpha level of .01.  Consistent with Oshima et al. 

(2006), the present study used 1000 replications. Items with initial NCDIF values larger 

than the cutoff value were identified as exhibiting DIF at the designated level of 

significance.   

 It should be noted the DFIT analysis is focused on detection of item-level DIF 

using the NCDIF index.  This is consistent with the purpose of the IPR method.  Further, 

this index offers the most direct comparison to the LR test.   

LR Test.  As described in the previous chapter, the LR test involves comparison of a 

series of nested models.  To begin, the compact (or baseline) model was estimated in 

which the four anchor items were constrained to be equal and all other items were free to 

vary.  Estimation of the compact model resulted in a baseline likelihood value of model 
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fit.  Next, a series of augmented models were estimated.  In each augmented model, item 

parameters for the studied item, in addition to the anchor items, were constrained to be 

equal.  So, for each condition of the 40-item test, one compact model and 36 augmented 

models were estimated for each replication.  This process produced a likelihood value of 

model fit for each augmented model. The likelihood ratio was then computed for each 

studied item and significance testing conducted to identify the items exhibiting DIF (see 

Equations 18 and 19).  The.01 level of significance was again used.   

Assessment of DIF Methods.  Analyses were conducted to compare DIF-detection rates 

using IPR-based NCDIF cutoff values, two previously recommended NCDIF cutoff 

values, and the LR test.  The .096 and .016 fixed NCDIF cutoff values proposed by Raju 

(1999b) and Flowers et al. (1999), respectively, were chosen for comparison purposes. 

Two statistics were examined: True positive (TP) rates and false positive (FP) rates. 

 A TP is defined as an item with true DIF that is correctly identified as exhibiting 

DIF.  TP rates (or power) for each item were determined by computing the number of 

replications in which DIF was detected divided by the total number of replications (100). 

The mean of TP rates was then computed across items to arrive at overall indices of 

power for each condition.  

 A FP is defined as a non-DIF item that is incorrectly identified as exhibiting DIF.  

FP rates (or Type 1 error rates) for each replication were determined by computing the 

total number of non-DIF items falsely identified as DIF items divided by the total number 

of non-DIF items.  The mean of FP rates was then computed across the 100 replications 

simulated for each condition to arrive at overall indices of Type 1 error.   

 Additional analyses were conducted to examine the degree of similarity between 
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methods across simulated conditions. Consistent with the second purpose of this study, 

this analysis focused specifically on agreement between the IPR-based NCDIF and LR 

tests.  Agreement was first computed taking into consideration only those items with true-

DIF.  Specifically, the number of true-DIF items identified with significant DIF in 

common to the two methods was divided by the total number of true-DIF items identified 

by that pair (in common and not in common).  Agreement was also computed across all 

items.  Similar to the above computation, the number of items identified with significant 

DIF in common to the two methods was divided by the total number of items identified 

by that pair.  Looking across all items, Cohen’s Kappa was computed to determine how 

much better this result was than what would be expected by chance.   
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CHAPTER 4 

RESULTS 

 
 Prior to examination of DIF detection, descriptive statistics were computed to 

better understand the magnitude of IPR-based NCDIF cutoff values relative to the 

previously recommended fixed cutoffs.  Further, for descriptive purposes, estimated 

NCDIF values were compared to the true NCDIF associated with the generating item 

parameters.  Finally, the accuracy of DIF detection using IPR-based NCDIF item cutoffs, 

previously recommended fixed cutoffs, and LR procedures was examined.  The results of 

these analyses are presented in the sections to follow. 

4.1 IPR-Based NCDIF Cutoff Values 

Within the IPR method, a unique NCDIF cutoff value is generated for each item. 

For each condition, the average IPR-based NCDIF cutoff (α=.01) across all items was 

computed to provide a sense of the magnitude of cutoffs across conditions.  These values 

are presented in Table 3.  In addition, Table 3 presents the range of item cutoffs observed 

in each condition averaged across replications.  As shown, there was variability in item 

cutoffs across conditions.  Further analysis was conducted to better understand the factors 

driving this variability. 

Looking across all conditions of DIF, a polynomial regression analysis was 

conducted regressing mean NCDIF item cutoffs on true a- and b-parameters and sample 

size.  Item parameters and sample size accounted for 80% of the variance in cutoffs, F (5, 

1114) = 889.28, p < .001.  Incorporating impact in to the regression model explained an 

additional 6% of the variance, F (6, 1113) = 1125.76, p < .001.  Sample size (Std. b = -

.595, p ≤ .001) and a curvilinear trend for the a-parameter (Std. b = 1.423, p ≤ .001) had 
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the strongest influence on IPR-based NCDIF item cutoffs.  Although still significant at p 

≤ .001, the b-parameter (Std. b = -.220) and impact (Std. b = .243) had relatively weaker, 

linear relationships with IPR-based NCDIF cutoffs.   

Since the influence of item parameters on cutoffs can largely be attributed to the 

a-parameter, the curvilinear relationship between a- parameter values and mean NCDIF 

cutoffs for the null condition with N=1000 and no impact is presented for illustrative 

purposes (see Figure 6).  As shown, cutoff values were notably larger for items with 

small a-parameters.  Cutoffs decreased sharply up to a=1.36, where values then began to 

level off.  Results were nearly identical to this illustration across all conditions studied.  

Further, results with regards to sample size indicate cutoffs tended to be higher 

(regardless of the condition of DIF or impact) when the sample size was 500 than when 

the sample size was 1000. Referring to the mean cutoffs presented in Table 3, the mean 

difference across sample sizes ranged from .012 to .016. 

An unexpected result of this analysis is the significant effect found for impact.  

IPR-based NCDIF item cutoffs are derived from the variance and covariance of 

parameter estimates.  The method used to compute the covariance matrix of parameter 

estimates relied only on focal group parameter estimates and sample size (see Equations 

47-59); therefore, impact should have no effect on item cutoffs.  Results, however, 

indicate cutoffs tended to be higher in conditions with impact.  This may be explained in 

terms of the effect shifting the θ distribution has on parameter values.  In conditions with 

impact, the focal group θ distribution is shifted downward such that the mean is equal to 

negative one.  Item parameters are scaled relative to the θ distribution.  When scaled 

relative to a lower θ value, there will be a corresponding increase in the b-parameters.  In 
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other words, item difficulty is greater for those of lower ability.  It is possible the 

observed differences in item cutoffs across conditions of impact are due to this parameter 

shift but in an unknown way.  One possible explanation is that item parameters tend to be 

estimated most accurately when the θ distribution is centered near the item location 

parameter.  Shifting the θ distribution of the focal group such that the mean is lowered by 

one standard deviation relative to the reference group may result in θ distributions that 

are less aligned with the item location, resulting in more estimation error.  

In addition to examining IPR-based NCDIF item cutoffs across studied 

conditions, comparisons were made to the previously recommended fixed cutoff values 

of .096 and .016.  Item cutoffs were consistently substantially lower than the .096 fixed 

cutoff.  Across all studied conditions, the largest average item cutoff was equal to .075 

(see Table 3).  IPR-based NCDIF item cutoffs were more similar to the .016 fixed cutoff, 

though.  Figure 7 illustrates item cutoffs for the null condition with no impact.  When the 

sample size was 500, average IPR-based NCDIF item cutoffs were consistently greater 

than or approximately equal to .016.  When the sample size was 1000, the average IPR-

based NCDIF item cutoffs tended to be less than or approximately equal to .016.  Similar 

results to those illustrated in Figure 7 were observed across conditions of DIF, as well as 

in conditions with impact.   

4.2 Estimated NCDIF Values 

 For descriptive purposes, the mean NCDIF value across replications was 

computed for each true-DIF item in each condition to provide a sense of the similarity 

between estimated and true NCDIF values (see Tables 4 and 5).  In the no impact 

conditions, estimated NCDIF values closely mirrored the true NCDIF values presented in 
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Table 2.  Estimated NCDIF values in conditions with impact, however, were notably 

smaller than values reported in Table 2. This was true across sample sizes.  In addition, 

the average NCDIF value across all non-DIF items (excluding the anchor items) in each 

condition was computed. As would be expected, these values were near zero across all 

conditions (range .004-.008). 

 It is not surprising that the estimated NCDIF values in the conditions with impact 

were smaller than the true NCDIF values presented in Table 2.  The true NCDIF values 

were computed assuming a θ distribution with mean equal to zero and standard deviation 

equal to one.  As described in the previous section, though, in conditions with impact the 

focal group θ distribution was shifted downward such that the mean was equal to 

negative one.  Because the distribution of θ plays a role in the definition of NCDIF, the 

true NCDIF values in conditions with impact would actually be different than those 

presented in Table 2.   

4.3 Detection of DIF 

  Consistent with the research hypotheses, examination of the methods of DIF 

detection was done in two stages. First, the IPR method was compared to previously 

recommended fixed cutoffs.  Specifically, true positive (TP) and false positive (FP) rates 

were examined across IPR-based NCDIF cutoffs, Raju’s (1999b) .096 fixed NCDIF 

cutoff, and Flowers et al’s. (1999) .016 fixed NCDIF cutoff.  Next, comparisons were 

then made between the DFIT and LR approaches. 

Comparison to Fixed NCDIF Cutoffs.  Tables 6 and 7 present overall TP and FP rates 

for each condition across DIF detection methods.  Examination of TP rates across the 

three alternate NCDIF tests provides partial support for the first hypothesis.  IPR-based 
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cutoffs were more likely to detect true DIF than the previously recommended .096 fixed 

cutoff value.  The IPR-based and .016 fixed cutoffs, however, were comparable in their 

ability to detect DIF.   

 In the 5% DIF conditions (Conditions 1 and 4), the three DFIT approaches 

demonstrated perfect DIF detection across sample sizes and conditions of impact.  IPR-

based and .016 fixed cutoffs maintained TP rates equal to 1.0 in the 10% DIF conditions 

(Conditions 2 and 5), whereas TP rates for the .096 fixed cutoff dropped, ranging from 

.78 to .97 across sample sizes and conditions of impact.  All three DFIT approaches had 

lower power to detect DIF in the 20% DIF conditions (Conditions 3 and 6).  The .096 

fixed cutoff again demonstrated the lowest power, with TP rates ranging from .39 to .68.  

TP rates for the .016 fixed cutoff ranged from .78-.88, and TP rates for the IPR-based 

cutoffs ranged from .61-.83.  Within these conditions, the IPR approach demonstrated 

slightly less power at N=500.  For the IPR-based cutoffs, TP rates were lowest in the 

N=500, impact conditions.  Sample size had minimal impact on the fixed cutoff 

approaches.  

 Item-level TP rates were examined (see Tables 8-11) to gain better understanding 

of which items explained the observed differences in DIF detection across the three DFIT 

approaches.  Results indicate each of the DFIT approaches had difficulty detecting items 

with non-uniform DIF embedded on just the a-parameter (Items 20 and 40 in Condition 

3, and Items 5, 6, 15 and 16 in Condition 6).  These items account for the decreased 

power observed in the 20% DIF conditions (Conditions 3 and 6).  Looking at the .096 

fixed cutoff, TP rates for these items were near zero across sample sizes and conditions of 

impact.  TP rates of the IPR-based and .016 fixed cutoffs for Item 40 in Condition 3 were 
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near zero across conditions, but this item contained the smallest magnitude of DIF (true 

NCDIF=.001) of any simulated item.  Power to detect the other items using IPR-based 

and .016 fixed cutoffs was better but still generally low.  The IPR method was able to 

detect non-uniform DIF of greater magnitude, though, such as that observed in Items 15 

and 35 of Condition 3.  Power to detect these non-uniform DIF items decreased only in 

the condition with N=500 and impact.     

   Next, FP rates were examined.  Referring again to Tables 6 and 7, results provide 

only modest support for the second hypothesis.  IPR-based FP rates were close but 

consistently slightly higher than the nominal significance level (α=.01), ranging from .03 

to .06.  At N=1000, IPR-based FP rates were slightly higher than FP rates produced using 

the .016 fixed cutoff, which ranged from .01 to .04.  At N=500, however, FP rates for the 

.016 fixed cutoff increased significantly, ranging from .10 to .14.  FP rates for the IPR-

based test, on the other hand, remained consistent across sample sizes.  The .096 fixed 

cutoff maintained the tightest control of Type 1 errors, producing no FPs across items. 

 In summary, both IPR-based and .016 fixed cutoffs outperformed the .096 fixed 

cutoff recommended by Raju (1999b).  The IPR method had TP rates comparable to the 

.016 fixed cutoff but maintained tighter control of Type 1 errors (FPs) in the smaller 

sample size conditions. Overall, therefore, the IPR method showed the best performance 

of the three DFIT approaches.  As such, comparisons to the LR test focused solely on the 

IPR method. 

Comparison to LR Test.  The IPR-based NCDIF and LR tests were compared across 

three indices of DIF detection: TP rates, FP rates and agreement.  Referring again to 

Tables 6 and 7, the LR test demonstrated strong power to detect DIF.  TP rates across all 
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conditions studied were consistently high, ranging from .95 to 1.00.  Looking at the 5 and 

10% DIF conditions (Conditions 1, 2, 4, and 5), results were comparable to those 

observed under the IPR method.  Notable differences between methods occurred only in 

the 20% DIF conditions (Conditions 3 and 6).  Recall that in these conditions TP rates for 

the IPR-based NCDIF test ranged from .61 to .83.  This is notably lower than the lowest 

value of .95 observed using the LR procedure.  Examination of item-level TP rates again 

helps us to understand these results.  

As can be seen in Tables 8-11, across many items there were minimal differences 

in TP rates between methods.  The LR test, however, had substantially more power to 

detect items with small magnitudes of non-uniform DIF embedded on just the a-

parameter (Items 20 and 40 in Condition 3, and Items 5, 6, 15, and 16 in Condition 6).  

TP rates for these items using the LR test ranged from .91 to 1.00 across conditions of 

sample size and impact, whereas TP rates using the IPR-based NCDIF test ranged from 

.00 to .99, with the vast majority of TP rates being less than .73.  It is not clear why the 

IPR method had more power to detect Item 16 in Condition 6 in the large sample size, no 

impact condition (TP=.99; see Table 8) than it did to detect other items with similar types 

of DIF. 

It should also be noted there were instances where the IPR method had markedly 

greater power to detect DIF than the LR test.  Referring to Table 11, Item 10 in 

Conditions 2 and 3 had TP rates of .98 and .95, respectively, under the IPR method.  TP 

rates using the LR test were .88 and .79, respectively.  It is not clear why the LR test 

showed decreased power to detect this item relative to the IPR method in conditions with 

N=500 and impact.  This does indicate, though, there will be circumstances where the 



72 

 

 

IPR method may demonstrate greater power than the LR test.   

 Examination of FP rates in Tables 6 and 7 suggests the LR test has slightly greater 

control of Type 1 errors than the IPR method.  FP rates for the LR test were closer to the 

nominal significance level (α=.01), ranging from .02 to .05.  Similar to the IPR method, 

the LR test maintained consistent control of Type 1 errors across sample sizes and 

conditions of impact. 

 To assess the similarity in items detected by the IPR method and LR test, 

agreement was first computed as the proportion of all items detected as DIF by either 

method that were detected as DIF by both methods.  This was computed for each 

replication of each condition, and the average across replications provided an overall 

index of agreement for each condition.  Due to the way agreement was defined, 

agreement could not be computed in replications where neither method identified any 

items as exhibiting DIF.  This only occurred in the null conditions, and the percentage of 

such replications ranged from 17 to 35% (see Table 12).  Agreement, in these instances, 

was computed based on all other replications.  Agreement values in the null conditions 

ranged from .11 to .24, indicating the two methods generally did not falsely identify the 

same set of items.       

 Tables 13 and 14 present the average agreement between IPR and LR tests 

examined across all items for the studied conditions.  When the sample size was 1000, 

the average agreement ranged from .63 to .80.  When the sample size was 500, the 

average agreement ranged from .52 to .81.  In the 20% DIF conditions, agreement was 

lower when N=500.  Results across all other conditions were nearly identical for large 

and small sample sizes, though.   
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Tables 13 and 14 further present Cohen’s Kappa computed and averaged across 

replications for each condition as an index of how much better agreement is than what 

would be expected by chance.  Across all conditions, observed Kappa values ranged from 

.60 to .80.  Landis and Koch (1977) suggest Kappa values ranging from .00 to .20 

represent slight agreement, .21 to .40 represents fair agreement, .41 to .60 represents 

moderate agreement, .61 to .80 represents substantial agreement, and Kappa values above 

.81 represent almost perfect agreement.  These results, therefore, demonstrate moderate 

to substantial agreement between the IPR method and LR test, supporting these results as 

better than what would be expected by chance.     

 A final measure of agreement was computed focusing only on true-DIF items. 

Specifically, the proportion of true-DIF items detected in common to the two procedures 

was computed and averaged across replications.  These results are presented in Tables 15 

and 16.  When the sample size was 1000, the average agreement ranged from .70 to 1.00 

across conditions. Agreement was lowest in the 20% DIF conditions, ranging from .70 to 

.82.  Near perfect agreement was observed in all other conditions (range .98 to 1.00).  

Similar results were observed when N=500.  In the smaller sample size, agreement within 

the 20% DIF conditions ranged from .59 to .76, and agreement across all other conditions 

ranged from .96 to 1.00.  There was only one instance of perfect agreement at the smaller 

sample size.  Cohen’s Kappa could not be reported for agreement indices based on only 

true-DIF items.  Cohen’s Kappa is computed as (HR – HRe)/(1 – HRe), where HR 

represents the observed hit rate (i.e., the number of correct identifications) and HRe 

represents the expected hit rate.  In replications where both methods demonstrated perfect 

DIF detection (i.e., TP=1.00), the expected hit rate will always equal one resulting in a 
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zero in the denominator.  Given the large number of replications across conditions with 

TPs equal to 1.00, this statistic was not computed.   
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CHAPTER 5 

DISCUSSION 
 

 This study examined the efficacy of the IPR method (Oshima et al., 2006) for 

determining cutoff values for polytomous items within the DFIT framework.  It was 

hypothesized IPR-based NCDIF item cutoffs would be more likely to detect true-DIF 

than previously recommended fixed cutoffs and would have false positive rates close to 

the nominal significance level.  In response to recent literature suggesting the DFIT 

framework to be overly conservative and less likely to detect DIF than the LR test (e.g., 

Bolt, 2002; Braddy et al., 2006; Meade & Lautenschlager, 2004), power and Type 1 error 

rates for IPR-based NCDIF and LR tests were also compared, and overall inter-method 

agreement was examined. 

A Monte Carlo research design was used in which data for a 40-item test with 5 

polytomous response categories was simulated under Samejima’s (1969) GRM.  Factors 

potentially influencing each statistic’s ability to detect DIF were examined.  Specifically, 

sample size, focal group ability distribution (or impact), proportion of test-wide DIF, and 

direction of DIF were manipulated.     

Examination of IPR-based cutoffs supports the need to derive item-level indices.  

Results show that cutoffs varied across items both within and across conditions.  The 

majority of the variance in item cutoffs was explained by the item parameters and sample 

size, with item discrimination having the largest overall effect.  As found with 

dichotomous data (Oshima et al., 2006), the IPR method produced larger item cutoffs at 

the smaller sample size.  This result makes sense when one considers how the IPR 

method works.  Within the IPR method, the larger the standard errors of the item 
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parameter estimates, the larger the item cutoff will be (Oshima et al.).  In essence, the 

IPR method takes into account unknown factors influencing the standard error of 

parameter estimates when generating a cutoff value.  So, the increased cutoff values 

observed are likely due to potentially poorer parameter estimation at N=500. 

The finding of higher IPR-based cutoffs in conditions with impact was 

unexpected.  This same result, however, was found using the 3-PL dichotomous IRT 

model (Oshima et al., 2006).  The differences observed are likely due to increased 

estimation errors resulting from the change in item difficulty parameters that result from 

shifting the focal group ability distribution, but it is not clear why this same effect would 

not have been observed with the 1 and 2-PL dichotomous models (Oshima et al.).  It 

would be interesting for future research to further examine this effect with both 

dichotomous and polytomous response data.    

Comparison of approaches within the DFIT framework shows the IPR method 

outperformed previously recommended fixed cutoffs.  Examination of TP and FP rates 

across the three DFIT approaches clearly indicates the .096 fixed cutoff is overly 

conservative and unlikely to detect smaller magnitudes of DIF.  As previously concluded, 

this approach trades too much power for increased control of Type 1 errors (Meade et al., 

2006).  Both the IPR-based and .016 fixed cutoffs were effective in identifying DIF, with 

the exception of the 20% DIF conditions.  Both approaches were less sensitive to the non-

uniform DIF of extremely small magnitudes embedded within these conditions.  These 

same conditions were problematic is past research as well (Flowers et al., 1999; Oshima 

et al., 2006).   

Across conditions, both the IPR-based and .016 fixed cutoffs had FP rates slightly 
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higher than the nominal significance level.  In interpreting FP results, though, one must 

determine what constitutes acceptable control of Type 1 errors. A FP rate equal to .05, for 

example, indicates that on average 5% of items are expected to be falsely identified as 

having DIF.  So, in a 40-item test there will on average be 2 items incorrectly identified 

as having DIF.  No attempts are made, however, to control for the Type 1 error inflation 

associated with conducting multiple tests of significance across items.  The expected 

Type 1 error across multiple independent tests can be computed as [1 - (1 – p)n], where p 

represents the nominal significance level and n represents the number of independent 

tests.  In the current study, the number of items tested ranged from 28 in the 20% DIF 

Conditions to 36 in the Null Conditions.  So, at α = .01, the expected Type 1 error rate in 

the 20% DIF conditions would equal [1 – (1 - .01)28] or .25.  In the Null Conditions, the 

expected Type 1 error rate would equal [1 - (1 - .01)36] or .30.  The largest observed FP 

rate for the IPR method was .06.  Comparatively, this is much lower than what could be 

and so these results indicate that although the IPR method may falsely identify DIF more 

often than desired it still maintains reasonable control of Type 1 errors.  FP rates for 

the .016 fixed cutoff were also consistently lower than these expected values, but the 

degree of control over Type 1 errors varied across sample sizes.  In the larger sample size 

the .016 fixed cutoff had slightly better control of Type 1 errors than the IPR method, but 

in the smaller sample size it was overly sensitive and demonstrated FP rates well above 

those of the IPR method.  As such, the IPR method is more generalizable and 

demonstrated the strongest overall performance within the DFIT framework. 

It is not surprising that the IPR-based and .016 fixed cutoffs performed similarly 

when the sample size was 1000.  The item parameters used to simulate data for the 
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current study were adapted from Flowers et al. (1999).  As such, the characteristics of the 

data used in the current study were the same as the conditions under which .016 was 

empirically determined to be the optimal cutoff value.  Flowers et al., however, did not 

include a sample size of 500 in their analysis.  In conditions with N=500, IPR-based 

cutoffs increased and use of the .016 fixed cutoff resulted in high FP rates.  This provides 

support for the idea that cutoffs are not generalizable across situations and again supports 

the need for a procedure to derive cutoffs that are tailored to a specific data set. 

 Because the IPR method outperforms prior fixed cutoffs, it stands to reason that 

current results change our understanding of the relative efficacy of the DFIT and LR 

approaches.  Past research has generally concluded the LR test is more sensitive and 

provides a better measure of DIF than the DFIT framework (Bolt, 2002; Braddy et al., 

2006; Meade & Lautenschlager, 2004).  In the current study, however, IPR-based NCDIF 

and LR tests showed comparable TP and FP rates across a number of the conditions and 

items studied.  With the exception of the 20% DIF conditions, there was high agreement 

between methods in detecting true-DIF items.  The increased agreement observed across 

most conditions in the current study may be explained by how DIF was measured and 

manipulated in the past research.   

First, some of the past research has used the .096 fixed NCDIF cutoff as the 

criterion for DIF detection (Braddy et al., 2002; Meade & Lautenschlager, 2004).  As was 

found in the current study, this does indeed provide an overly conservative measure of 

DIF, and it is therefore not surprising DFIT was less likely to detect DIF in these studies.  

Research that has derived empirical cutoffs (Bolt, 2002), on the other hand, still 

supported the LR test but also noted DFIT may be preferable in some circumstances, 
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such as with larger sample sizes where the LR test may become too sensitive to model 

misfit.  In addition, Braddy et al’s. results were based on actual test data.  So, while 

results suggested the LR test to be more sensitive, it cannot be known whether the items 

identified had true-DIF or whether they were false positives.     

Further, Meade and Lautenschlager (2004) simulated differences on individual b-

parameters.  For example, in one condition of DIF studied, only the largest b-parameter 

differed between groups for each DIF item.  This simulated a situation in which the most 

extreme response option was less likely to be used by one group than the other, while no 

differences occurred for the other response options.  In the current investigation, however, 

all four b-parameters were consistently simulated to differ between groups.  It has been 

acknowledged in the literature (Flowers et al., 1999) that polytomous DFIT allows for 

different patterns of DIF on the b-parameters to cancel each other out at the item level.  

This can occur because within the polytomous DFIT framework parameter values for 

each response category are combined to yield the expected score, or item true score 

function.  Examination of DIF is then based on comparison of the item true score 

functions across groups, whereas the LR test compares the individual b-parameters.  It 

therefore makes sense DIF simulated in this manner could be less likely to be detected by 

DFIT.   

It is also worth noting that Meade and Lautenschlager (2004) acknowledged their 

study simulated relatively small amounts of DIF.  Using empirical cutoffs, DFIT has 

demonstrated adequate power in subsequent research simulating moderate amounts of 

DIF on separate b-parameters (Meade et al., 2006).  This suggests prior results may be 

more an artifact of the magnitudes of DIF simulated than of the patterns of DIF simulated. 
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Nonetheless, in the current study, the LR test performed well across conditions, 

outperforming the IPR method in the 20% DIF conditions.  This can be attributed to the 

ability to detect non-uniform DIF.  The LR test showed greater power to detect non-

uniform DIF of small magnitudes.  The IPR method, on the other hand, was less sensitive 

to DIF of this nature.  The fact that DFIT is less sensitive to small magnitude non-

uniform DIF is only a concern if these small amounts of DIF would be practically 

meaningful, and determination of what magnitude of DIF translates into practically 

meaningful outcomes is open for discussion.  This poses a challenge for practitioners in 

deciding what method of studying DIF is most appropriate and suggests the need for a 

measure of effect size. 

In the meantime, the optimal solution may be to examine DIF using multiple 

methods.  If multiple DIF procedures arrive at the same conclusion regarding DIF, this 

may increase confidence that items detected contain non-trivial amounts of DIF.  This 

approach may not be realistic, however, given practical time constraints.  Alternatively, 

practitioners should choose a method of studying DIF taking into consideration the 

purpose of the test or questionnaire and consequences associated with failing to identify a 

true-DIF item (Braddy et al., 2006; Meade & Lautenschlager, 2004).  In employment 

testing situations where the conclusions made based on test results have potential legal 

implications, practitioners may be wise to take a highly stringent approach and remove 

items with any magnitude of DIF.  In this case a more powerful measure of DIF, such as 

the LR test, would always be preferred.  With organizational attitude surveys, on the 

other hand, the consequences of including items with very small amounts of DIF are not 

as great, and practitioners may be willing to sacrifice power to detect small magnitudes of 
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DIF.  In this case, either the DFIT framework or LR test would be an acceptable choice.   

 While the results of the current study tend to favor the LR test, it is important to 

remember the DFIT framework offers several practical advantages over the LR test.  First, 

DFIT provides a means to study differential functioning at both the item and test levels.  

Whereas DFIT allows practitioners to statistically demonstrate equivalence at the test 

level, the LR test does not and practitioners must assume that removal of DIF items 

results in an unbiased measure.  Further, DFIT offers two indices of DIF: NCDIF and 

CDIF.  The NCDIF index is most comparable to the LR test, and both of these examine 

DIF for a single item at a time, assuming all other items to be DIF-free.  Quite often, this 

assumption may not be true.  The CDIF index, however, takes into account compensating 

bias across items and allows practitioners to understand the impact of each item on 

overall DTF.  This is useful because practitioners often make decisions based on overall 

test or questionnaire results.  If the DIF present in two items cancels out at the test level 

and only test level results will be interpreted, then the presence of DIF on these individual 

items is not of concern.  Any item level group differences are lost in the aggregate.  From 

a test or questionnaire development standpoint, this means the individual items can be 

retained in the measure, again assuming decisions will not be made based on item level 

results.  Were the LR test to be used, on the other hand, all DIF items would 

automatically be discarded.  In practice, the pool of items is often limited and so it is 

beneficial to have a means by which to be more selective in deciding which items will 

have the largest impact on reducing DTF.   

It is also important to remember that this new method offers several advantages 

over the fixed cutoff DFIT approach (Oshima et al., 2006).  First, the IPR method 
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provides cutoffs that are tailored to a specific data set.  This overcomes concerns that 

have been raised regarding the generalizability of fixed cutoffs across testing situations. 

Although practitioners could derive empirical cutoffs to achieve the same result, the 

process of doing so is time consuming and often not realistic.  The IPR method, on the 

other hand, is implemented within available computer software making it more accessible 

to use in practice.  This makes the IPR method a valuable addition to the DFIT 

framework.  Second, the IPR method produces a distinct cutoff for each item.  This is 

advantageous because the standard errors of item parameter estimates vary across items 

and so the optimal criteria for detecting DIF varies as well. 

In the current study, sample size, focal group distribution (i.e., impact), proportion 

of test-wide DIF, and direction of DIF had little effect on TP and FP rates across methods 

of DIF detection.  This is an important point because it means that results were fairly 

consistent across a wide range of conditions.  This suggests results are likely to 

generalize beyond the current study. 

The current study is not without limitations, however.  First and foremost, the use 

of Monte Carlo research methods calls into question the generalizability of results.  Data 

was simulated to represent a perfectly unidimensional test or questionnaire, as well as 

normally distributed test data.  In practice, though, data seldom adheres to these 

conditions.  It stands to reason that violations of these assumptions will impact DIF 

detection using IRT-based procedures.  Future research should examine the robustness of 

IPR-based NCDIF and LR tests to violations of these statistical assumptions.  Further, b-

parameters were evenly spaced and DIF was always simulated on all four b-parameters.  

In practice, it is likely different patterns of DIF on the b-parameters, such as those 
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examined by Meade and Lautenschlager (2004), occur.  Sensitivity to DIF of this nature 

using IPR-based cutoffs should be examined.     

In addition, the GRM provided an exact fit to the simulated data used in the 

current study.  This raises two issues.  First, both the DFIT framework and LR test can be 

used with other polytomous IRT models.  Future research should examine the efficacy of 

these approaches using data simulated according to different underlying response models, 

such as the generalized partial credit model (Muraki, 1990).  Second, in practice, it is not 

known which IRT model best fits the data, and the model chosen to study DIF can only 

approximate the true underlying response process (Bolt, 2002).  It is therefore prudent 

that one consider robustness to model misspecification in examining different DIF 

procedures. As noted before, Bolt found empirically derived DFIT cutoffs to be less 

affected by slight model misfit than the LR test.  Sensitivity to model misfit increased at 

larger sample sizes, and therefore DFIT was suggested to be preferable to the LR test 

when working with large data sets.  Future research should examine the impact of model 

misspecification using IPR-based cutoffs. 

Further, the current study focused on sample sizes of 500 and 1000.  IPR-based 

NCDIF tests demonstrated comparable TP and FP rates across both of these conditions.  

This “small” sample size, however, is still considerably larger than what can be 

commonly found in practice.  Sample sizes in the current study were also equal for the 

reference and focal groups.  In practice, this may often not be the case, and it is possible 

this could impact DIF detection.  IPR-based NCDIF item cutoffs are based on the item 

parameter covariance matrix for the focal group and so are influenced only by the focal 

group sample size.  A smaller or larger sample size for the reference group will affect the 
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sampling variance of the NCDIF statistic, though, and this will not be reflected in the 

cutoff.  Oshima et al. (2006) studied the IPR method with dichotomous data under 

conditions of unequal sample sizes and still found support for the IPR-based cutoffs.  

Nonetheless, this should be taken into consideration with polytomous data as well.     

The current study further used concurrent estimation procedures with four known 

non-DIF anchor items.  The benefit of this approach is that the anchor items are known to 

be unbiased, and so there are no concerns regarding the potential impact of including a 

DIF-item in the anchor set on subsequent DIF analyses.  However, this process has 

limited applicability to practice as it cannot be known which items are DIF-free in an 

empirical data set.  Stark et al. (2006) described a procedure based on the LR test that 

could be used to identify a single anchor item in practice, but this requires multiple DIF 

analyses and comparison of results from different runs, making it very time consuming 

and labor intensive.  Further, this does not extend to the DFIT framework.       

It should again be noted that DFIT has typically not been implemented using 

concurrent estimation procedures either. This approach was felt to be advantageous in the 

current study because it offered a more even comparison to the LR test.  In other words, it 

removed the possibility that any observed differences across methods could be due to the 

use of linking versus concurrent estimation procedures.  Practitioners, however, are likely 

to continue using linking of reference and focal group parameter values.  A logical next 

step would be to compare results within the DFIT framework across these techniques.  If 

results are comparable, the above issue regarding selection of an appropriate anchor set 

becomes a moot point within DFIT because practitioners can continue to use iterative 

linking and achieve the same benefits observed in this study.  This would be a notable 
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advantage over the LR method, in that selection of at least one anchor item will always 

be an issue using that approach.  

Despite the advances of the IPR method, it does also introduce one unique 

challenge to using DFIT with polytomous data.  Current polytomous IRT software 

packages do not provide estimates of item parameter covariances in the standard output.  

In the current study, alternative procedures to compute covariances from the item 

parameters had to be used (Li & Lissitz, 2004; Morris et al., 2007), and practitioners may 

not have the expertise to do this.  This is not an issue with dichotomous data because the 

covariances needed are readily available in the output.  Moving forward, it would be 

beneficial for vendors of IRT software to make this information more easily available for 

polytomous data as well.   

In conclusion, this study supported the efficacy of the IPR method in detecting 

DIF, while also maintaining acceptable control of Type 1 error rates.  Although questions 

regarding the generalizability of results are always an issue in research based on 

simulated data, the factors included in this study (sample size, group differences in ability, 

proportion of test-wide DIF, and direction of DIF) are felt to encompass conditions found 

in practice.  These results are not meant to encompass all conditions found in practice, 

but rather serve as a starting point for understanding the value of the IPR method in 

working with polytomous data.  Future research can build upon these results and 

incorporate other variables that may impact the efficacy of this procedure (e.g., IRT 

model misfit, smaller sample sizes), especially as it relates to other methods of DIF 

detection.  Extension of this procedure to detection of DTF should also be addressed.   
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CHAPTER 6 

TABLES 

 
Table 1.  Reference Group Item Parameters (Page 1 of 2) 

Item a b1 b2 b3 b4 
1 .55 -1.80 -.60 .60 1.80 
2 .55 -1.80 -.60 .60 1.80 
3 .73 -2.32 -1.12 .08 1.28 
4 .73 -2.32 -1.12 .08 1.28 
5a .73 -1.80 -.60 .60 1.80 
5b .73 -2.30 -1.10 .10 1.30 
5c .73 -1.80 -.60 .60 1.80 
6a .73 -1.80 -.60 .60 1.80 
6b .73 -1.30 -.10 1.10 2.30 
6c 1.23 -1.80 -.60 .60 1.80 
7 .73 -1.80 -.60 .60 1.80 
8 .73 -1.80 -.60 .60 1.80 
9 .73 -1.28 -.08 1.12 2.32 

10 .73 -1.28 -.08 1.12 2.32 
11 1.00 -2.78 -1.58 -.38 .82 
12 1.00 -2.78 -1.58 -.38 .82 
13 1.00 -2.32 -1.12 .08 1.28 
14 1.00 -2.32 -1.12 .08 1.28 
15a 1.00 -2.32 -1.12 .08 1.28 
15b 1.00 -2.57 -1.37 -.17 1.03 
15c 1.00 -2.32 -1.12 .08 1.28 
16a 1.00 -2.32 -1.12 .08 1.28 
16b 1.00 -2.07 -.87 .33 1.53 
16c .50 -2.32 -1.12 .08 1.28 
17 1.00 -1.80 -.60 .60 1.80 
18 1.00 -1.80 -.60 .60 1.80 
19 1.00 -1.80 -.60 .60 1.80 
20 1.00 -1.80 -.60 .60 1.80 
21 1.00 -1.80 -.60 .60 1.80 
22 1.00 -1.80 -.60 .60 1.80 
23 1.00 -1.80 -.60 .60 1.80 
24 1.00 -1.80 -.60 .60 1.80 
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Table 1.  Reference Group Item Parameters (Page 2 of 2) 

Item a b1 b2 b3 b4 
25a 1.00 -2.10 -.90 .30 1.50 
25b 1.00 -1.28 -.08 1.12 2.32 
25c 1.00 -2.10 -.90 .30 1.50 
26a 1.00 -1.28 -.08 1.12 2.32 
26b 1.00 -1.28 -.08 1.12 2.32 
26c 1.00 -.78 .42 1.62 2.82 
27 1.00 -1.28 -.08 1.12 2.32 
28 1.00 -1.28 -.08 1.12 2.32 
29 1.00 -1.90 -.70 .50 1.70 
30a 1.00 -1.60 -.40 .80 2.00 
30b 1.00 -.82 .38 1.58 2.78 
30c 1.00 -.60 .60 1.80 3.00 
31 1.36 -2.32 -1.12 .08 1.28 
32 1.36 -2.32 -1.12 .08 1.28 
33 1.36 -1.80 -.60 .60 1.80 
34 1.36 -1.80 -.60 .60 1.80 
35 1.36 -1.80 -.60 .60 1.80 
36 1.36 -1.80 -.60 .60 1.80 
37 1.36 -1.28 -.08 1.12 2.32 
38 1.36 -1.28 -.08 1.12 2.32 
39 1.80 -1.80 -.60 .60 1.80 
40 1.80 -1.80 -.60 .60 1.80 

   aParameters used in Conditions 1, 2, and 3. 
   bParameters used in Conditions 4 and 5. 
   cParameters used in Condition 6. 
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Table 2.  Focal Group Item Parameters and True NCDIF Values by 

Condition  
 

Difference 
Item a b1 b2 b3 b4 a b 

True 
NCDIF 

Condition 1 
5 .73 -.80 .40 1.60 2.80 ---- +1.0 .47 
10 .73 -.28 .92 2.12 3.32 ---- +1.0 .42 

Condition 2 
5 .73 -.80 .40 1.60 2.80 ---- +1.0 .47 
10 .73 -.78 .42 1.62 2.82 ---- +.5 .11 
15 1.00 -1.32 -.12 1.08 2.28 ---- +1.0 .56 
20 1.00 -1.30 -.10 1.10 2.30 ---- +.5 .14 

Condition 3 
5 .73 -.80 .40 1.60 2.80 ---- +1.0 .47 
10 .73 -.78 .42 1.62 2.82 ---- +.5 .11 
15 .50 -1.82 -.62 .58 1.78 -.5 +.5 .17 
20 .50 -1.80 -.60 .60 1.80 -.5 ---- .03 
25 1.00 -1.10 .10 1.30 2.50 ---- +1.0 .56 
30 1.00 -1.10 .10 1.30 2.50 ---- +.5 .14 
35 .86 -1.30 -.10 1.10 2.30 -.5 +.5 .14 
40 1.30 -1.80 -.60 .60 1.80 -.5 ---- .00 

Condition 4 
5 .73 -1.30 -.10 1.10 2.30 ---- +1.0 .48 
6 .73 -2.30 -1.10 .10 1.30 ---- -1.0 .48 

Condition 5 
5 .73 -1.30 -.10 1.10 2.30 ---- +1.0 .48 
6 .73 -2.30 -1.10 .10 1.30 ---- -1.0 .48 
15 1.00 -2.07 -.87 .33 1.53 ---- +.5 .14 
16 1.00 -2.57 -1.37 -.17 1.03 ---- -.5 .14 

Condition 6 
5 1.23 -1.80 -.60 .60 1.80 +.5 ---- .01 
6 .73 -1.80 -.60 .60 1.80 -.5 ---- .01 
15 .50 -2.32 -1.12 .08 1.28 -.5 ---- .03 
16 1.00 -2.32 -1.12 .08 1.28 +.5 ---- .03 
25 1.00 -1.10 .10 1.30 2.50 ---- +1.0 .56 
26 1.00 -1.78 -.58 .62 1.82 ---- -1.0 .54 
29 1.00 -1.40 -.20 1.00 2.20 ---- +.5 .14 
30 1.00 -1.10 .10 1.30 2.50 ---- -.5 .13 
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Table 3.  Average IPR-based NCDIF Cutoffs (α=.01) 
 

  N=1000 N=500 
Impact Condition Mean Cutoff Range Mean Cutoff Range 

No Impact 
 Null Condition .012 .006-.024 .025 .011-.048 
  

Unidirectional DIF Conditions 
 Condition 1 .012 .006-.025 .025 .011-.048 
 Condition 2 .012 .006-.025 .025 .011-.049 
 Condition 3 .013 .006-.025 .026 .012-.048 
  

Balanced Bidirectional DIF Conditions  
 Condition 4 .012 .006-.025 .025 .011-.049 
 Condition 5 .012 .006-.025 .025 .011-.048 
 Condition 6 .013 .006-.025 .025 .011-.048 
 
Impact 
 Null Condition .017 .007-.034 .032 .015-.064 
  

Unidirectional DIF Conditions 
 Condition 1 .016 .007-.035 .031 .014-.065 
 Condition 2 .016 .007-.035 .032 .015-.066 
 Condition 3 .017 .007-.034 .034 .015-.067 
  

Balanced Bidirectional DIF Conditions  
 Condition 4 .017 .007-.034 .032 .015-.067 
 Condition 5 .017 .007-.034 .032 .015-.065 
 Condition 6 .017 .007-.039 .033 .015-.075 
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Table 4.  Mean NCDIF Values for N=1000 

 
 

Condition 
 

DIF Item 
Mean NCDIF 

No Impact 
Mean NCDIF 

Impact 
Unidirectional DIF Conditions 
Condition 1 Item 5 .477 .370 
 Item 10 .424 .269 
 
Condition 2 

 
Item 5  

 
.475 

 
.369 

 Item 10 .119 .084 
 Item 15 .582 .523 
 Item 20 .149 .125 
 
Condition 3 

 
Item 5 

 
.489 

 
.380 

 Item 10 .118 .084 
 Item 15 .175 .082 
 Item 20 .027 .042 
 Item 25 .593 .470 
 Item 30 .142 .115 
 Item 35 .143 .095 
 Item 40 .003 .004 
 
Balanced-Bidirectional DIF Conditions  
Condition 4 Item 5 .485 .449 
 Item 6 .498 .418 
 
Condition 5 

 
Item 5  

 
.499 

 
.445 

 Item 6 .498 .431 
 Item 15 .143 .161 
 Item 16 .142 .134 
 
Condition 6 

 
Item 5 

 
.010 

 
.018 

 Item 6 .011 .014 
 Item 15 .034 .029 
 Item 16 .035 .035 
 Item 25 .569 .503 
 Item 26 .558 .405 
 Item 29 .153 .137 
 Item 30 .124 .081 
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Table 5.  Mean NCDIF Values for N=500 

 
 

Condition  
 

DIF Item 
Mean NCDIF 

No Impact 
Mean NCDIF 

Impact 
Unidirectional DIF Conditions 
Condition 1 Item 5 .463 .370 
 Item 10 .411 .275 
 
Condition 2 

 
Item 5  

 
.504 

 
.358 

 Item 10 .128 .091 
 Item 15 .585 .526 
 Item 20 .152 .129 
 
Condition 3 

 
Item 5 

 
.468 

 
.349 

 Item 10 .119 .083 
 Item 15 .171 .081 
 Item 20 .027 .046 
 Item 25 .583 .477 
 Item 30 .141 .112 
 Item 35 .143 .096 
 Item 40 .006 .007 
 
Balanced-Bidirectional DIF Conditions 
Condition 4 Item 5 .497 .434 
 Item 6 .515 .424 
 
Condition 5 

 
Item 5  

 
.485 

 
.451 

 Item 6 .498 .415 
 Item 15 .153 .149 
 Item 16 .151 .148 
 
Condition 6 

 
Item 5 

 
.011 

 
.023 

 Item 6 .013 .017 
 Item 15 .039 .037 
 Item 16 .034 .037 
 Item 25 .582 .484 
 Item 26 .554 .401 
 Item 29 .156 .130 
 Item 30 .144 .083 
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Table 6.  Average True Positive and False Positive Rates for N=1000 (α = .01) 

 
IPR-Based 

NCDIF 
.016 NCDIF 

Cutoff 
.096 NCDIF 

Cutoff LR Test 
Impact Condition 

No. of 
DIF 

Items TP FP TP FP TP FP TP FP 
No Impact 
 Null Condition 0 ---- .05 ---- .02 ---- .00 ---- .02 
  

Unidirectional  DIF Conditions  
 Condition 1 2 1.00 .05 1.00 .01 1.00 .00 1.00 .03 
 Condition 2 4 1.00 .06 1.00 .02 .92 .00 .99 .04 
 Condition 3 8 .82 .04 .84 .02 .68 .00 1.00 .02 
  

Balanced-Bidirectional DIF Conditions  
 Condition 4 2 1.00 .05 1.00 .02 1.00 .00 1.00 .03 
 Condition 5 4 1.00 .04 1.00 .02 .97 .00 1.00 .03 
 Condition 6 8 .81 .04 .77 .01 .47 .00 1.00 .02 
Impact  
 Null Condition 0 ---- .04 ---- .03 ---- .00 ---- .03 
  

Unidirectional  DIF Conditions  
 Condition 1 2 1.00 .04 1.00 .03 1.00 .00 .99 .03 
 Condition 2 4 1.00 .03 1.00 .03 .79 .00 .98 .03 
 Condition 3 8 .83 .04 .87 .03 .47 .00 .98 .03 
  

Balanced-Bidirectional DIF Conditions  
 Condition 4 2 1.00 .03 1.00 .03 1.00 .00 1.00 .03 
 Condition 5 4 1.00 .05 1.00 .04 .93 .00 1.00 .04 
 Condition 6 8 .70 .05 .79 .03 .40 .00 1.00 .04 
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Table 7.  Average True Positive and False Positive Rates for N = 500 (α = .01) 

 
IPR-Based 

NCDIF 
.016 NCDIF 

Cutoff 
.096 NCDIF 

Cutoff LR Test 
Impact Condition 

No. of 
DIF 

Items TP FP TP FP TP FP TP FP 
No Impact 
 Null Condition 0 ---- .06 ---- .12 ---- .00 ---- .03 
  

Unidirectional  DIF Conditions 
 Condition 1 2 1.00 .04 1.00 .11 1.00 .00 1.00 .03 
 Condition 2 4 1.00 .06 1.00 .13 .89 .00 .97 .03 
 Condition 3 8 .77 .04 .84 .11 .65 .00 .97 .03 
  

Balanced-Bidirectional DIF Conditions  
 Condition 4 2 1.00 .04 1.00 .10 1.00 .00 .99 .03 
 Condition 5 4 1.00 .06 1.00 .12 .94 .00 .98 .03 
 Condition 6 8 .67 .06 .78 .11 .47 .00 .00 .04 
Impact  
 Null Condition 0 ---- .04 ---- .13 ---- .00 ---- .02 
  

Unidirectional  DIF Conditions  
 Condition 1 2 1.00 .03 1.00 .12 1.00 .00 .99 .03 
 Condition 2 4 1.00 .03 1.00 .12 .78 .00 .96 .03 
 Condition 3 8 .73 .03 .88 .14 .47 .00 .95 .03 
  

Balanced-Bidirectional DIF Conditions  
 Condition 4 2 1.00 .04 1.00 .13 1.00 .00 .99 .03 
 Condition 5 4 1.00 .04 1.00 .13 .93 .00 .97 .03 
 Condition 6 8 .61 .04 .82 .13 .39 .00 .99 .05 
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Table 8.  Item Level True Positive Rates for N=1000, No Impact Conditions (α = .01) 

 

Condition Item 
IPR-Based 

NCDIF 
.016 NCDIF 

Cutoff 
.096 NCDIF 

Cutoff LR Test 
 
Unidirectional  DIF Conditions  
Condition 1 5 1.00 1.00 1.00 1.00 
 10 1.00 1.00 1.00 1.00 
 
Condition 2 

 
5 

 
1.00 

 
1.00 

 
1.00 

 
1.00 

 10 1.00 1.00 .70 .99 
 15 1.00 1.00 1.00 1.00 
 20 1.00 1.00 .97 .98 
 
Condition 3 

 
5 

 
1.00 

 
1.00 

 
1.00 

 
1.00 

 10 1.00 1.00 .68 1.00 
 15 1.00 1.00 .97 1.00 
 20 .53 .72 .00 1.00 
 25 1.00 1.00 1.00 1.00 
 30 1.00 1.00 .90 1.00 
 35 1.00 1.00 .89 1.00 
 40 .03 .00 .00 1.00 
 
Balanced-Bidirectional DIF Conditions  
Condition 4 5 1.00 1.00 1.00 1.00 
 6 1.00 1.00 1.00 1.00 
 
Condition 5 

 
5 

 
1.00 

 
1.00 

 
1.00 

 
1.00 

 6 1.00 1.00 1.00 1.00 
 15 1.00 1.00 .94 1.00 
 16 1.00 1.00 .93 1.00 
 
Condition 6 

 
5 

 
.59 

 
.18 

 
.00 

 
.99 

 6 .16 .26 .00 .99 
 15 .70 .86 .00 1.00 
 16 .99 .89 .00 1.00 
 25 1.00 1.00 1.00 1.00 
 26 1.00 1.00 1.00 1.00 
 29 1.00 1.00 .97 1.00 
 30 1.00 1.00 .80 .98 
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Table 9.  Item Level True Positive Rates for N=1000, Impact Conditions (α = .01) 

 

Condition Item 
IPR-Based 

NCDIF 
.016 NCDIF 

Cutoff 
.096 NCDIF 

Cutoff LR Test 
 
Unidirectional  DIF Conditions  
Condition 1 5 1.00 1.00 1.00 .99 
 10 1.00 1.00 1.00 .99 
 
Condition 2 

 
5 

 
1.00 

 
1.00 

 
1.00 

 
1.00 

 10 1.00 1.00 .35 .94 
 15 1.00 1.00 1.00 1.00 
 20 1.00 1.00 .79 .97 
 
Condition 3 

 
5 

 
1.00 

 
1.00 

 
1.00 

 
1.00 

 10 1.00 1.00 .30 .96 
 15 .99 1.00 .30 1.00 
 20 .58 .93 .02 1.00 
 25 1.00 1.00 1.00 1.00 
 30 1.00 1.00 .71 .96 
 35 1.00 1.00 .44 .98 
 40 .03 .02 .00 .95 
 
Balanced-Bidirectional DIF Conditions  
Condition 4 5 1.00 1.00 1.00 1.00 
 6 1.00 1.00 1.00 1.00 
 
Condition 5 

 
5 

 
1.00 

 
1.00 

 
1.00 

 
1.00 

 6 1.00 1.00 1.00 1.00 
 15 1.00 1.00 .90 .98 
 16 1.00 1.00 .82 1.00 
 
Condition 6 

 
5 

 
.58 

 
.45 

 
.00 

 
1.00 

 6 .09 .31 .00 1.00 
 15 .23 .78 .01 1.00 
 16 .73 .80 .01 1.00 
 25 1.00 1.00 1.00 1.00 
 26 1.00 1.00 1.00 1.00 
 29 1.00 1.00 .88 .97 
 30 1.00 1.00 .29 1.00 
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Table 10.  Item Level True Positive Rates for N=500, No Impact Conditions (α = .01) 
 

Condition Item 
IPR-Based 

NCDIF 
.016 NCDIF 

Cutoff 
.096 NCDIF 

Cutoff LR Test 
 
Unidirectional  DIF Conditions  
Condition 1 5 1.00 1.00 1.00 0.99 
 10 1.00 1.00 1.00 1.00 
 
Condition 2 

 
5 

 
1.00 

 
1.00 

 
1.00 

 
1.00 

 10 1.00 1.00 0.71 0.91 
 15 1.00 1.00 1.00 1.00 
 20 1.00 1.00 0.85 0.96 
 
Condition 3 

 
5 

 
1.00 

 
1.00 

 
1.00 

 
.98 

 10 1.00 1.00 .66 .92 
 15 1.00 1.00 .92 .99 
 20 .00 .65 .00 .98 
 25 1.00 1.00 1.00 1.00 
 30 1.00 1.00 .85 .97 
 35 1.00 1.00 .80 .97 
 40 .00 .05 .00 .92 
 
Balanced-Bidirectional DIF Conditions  
Condition 4 5 1.00 1.00 1.00 .99 
 6 1.00 1.00 1.00 .99 
 
Condition 5 

 
5 

 
1.00 

 
1.00 

 
1.00 

 
.98 

 6 1.00 1.00 1.00 1.00 
 15 1.00 1.00 .86 .96 
 16 1.00 1.00 .89 .98 
 
Condition 6 

 
5 

 
.27 

 
.24 

 
.00 

 
1.00 

 6 .03 .32 .00 1.00 
 15 .36 .86 .02 1.00 
 16 .66 .78 .02 1.00 
 25 1.00 1.00 1.00 1.00 
 26 1.00 1.00 1.00 1.00 
 29 1.00 1.00 .86 .99 
 30 1.00 1.00 .83 .98 
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Table 11.  Item Level True Positive Rates for N=500, Impact Conditions (α = .01) 

 

Condition Item 
IPR-Based 

NCDIF 
.016 NCDIF 

Cutoff 
.096 NCDIF 

Cutoff LR Test 
 
Unidirectional  DIF Conditions  
Condition 1 5 1.00 1.00 1.00 .98 
 10 1.00 1.00 1.00 .99 
 
Condition 2 

 
5 

 
1.00 

 
1.00 

 
1.00 

 
1.00 

 10 .98 .99 .43 .88 
 15 1.00 1.00 1.00 .99 
 20 1.00 1.00 .68 .96 
 
Condition 3 

 
5 

 
1.00 

 
1.00 

 
1.00 

 
.99 

 10 .95 1.00 .34 .79 
 15 .62 1.00 .30 1.00 
 20 .23 .90 .05 .99 
 25 1.00 1.00 1.00 .99 
 30 1.00 1.00 .61 .94 
 35 .98 1.00 .44 .99 
 40 .04 .10 .00 .91 
 
Balanced-Bidirectional DIF Conditions  
Condition 4 5 1.00 1.00 1.00 .99 
 6 1.00 1.00 1.00 .99 
 
Condition 5 

 
5 

 
1.00 

 
1.00 

 
1.00 

 
.99 

 6 1.00 1.00 1.00 .99 
 15 1.00 1.00 .88 .93 
 16 .99 1.00 .82 .97 
 
Condition 6 

 
5 

 
.34 

 
.53 

 
.00 

 
.99 

 6 .01 .45 .00 .99 
 15 .08 .82 .00 1.00 
 16 .42 .77 .03 1.00 
 25 1.00 1.00 1.00 1.00 
 26 1.00 1.00 1.00 1.00 
 29 1.00 1.00 .74 .96 
 30 1.00 1.00 .35 .94 
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Table 12.  Average Agreement Between IPR-based NCDIF and LR Tests for the Null 

Conditions 
 

 
Null Condition 

Percentage of Replications 
with No False Positives 

 
Agreement* 

N = 1000, No Impact 17% .18 
N = 1000, Impact 28% .14 
N = 500, No Impact 23% .24 
N = 500, Impact 35% .11 

*Computed across replications with at least one false positive across methods 



 

 

99

 

 
Table 13.  Average Agreement Between IPR-based NCDIF and LR Tests across All 

Items for N=1000 
 

Impact Condition Agreement Cohen’s Kappa 
No Impact 
 Unidirectional DIF Conditions 
 Condition 1 .70 .78 
 Condition 2 .79 .85 
 Condition 3 .74 .80 
  

Balanced-Bidirectional DIF Conditions 
 Condition 4 .69 .77 
 Condition 5 .80 .85 
 Condition 6 .72 .78 
 
Impact 
 Unidirectional DIF Conditions 
 Condition 1 .71 .78 
 Condition 2 .80 .86 
 Condition 3 .74 .80 
  

Balanced-Bidirectional DIF Conditions 
 Condition 4 .74 .81 
 Condition 5 .78 .83 
 Condition 6 .63 .70 
 



 

 

100

 

 
Table 14.  Average Agreement Between IPR-based NCDIF and LR Tests across All 

Items for N=500 
 

Impact Condition Agreement Cohen’s Kappa 
No Impact 
 Unidirectional DIF Conditions 
 Condition 1 .71 .78 
 Condition 2 .74 .81 
 Condition 3 .67 .74 
  

Balanced-Bidirectional DIF Conditions 
 Condition 4 .69 .77 
 Condition 5 .77 .82 
 Condition 6 .58 .65 
 
Impact 
 Unidirectional DIF Conditions 
 Condition 1 .69 .77 
 Condition 2 .81 .86 
 Condition 3 .65 .72 
  

Balanced-Bidirectional DIF Conditions 
 Condition 4 .72 .80 
 Condition 5 .79 .85 
 Condition 6 .52 .60 
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Table 15.  Average Agreement Between IPR-based NCDIF and LR Tests across True 

DIF Items for N=1000 
 

Impact Condition No. of DIF Items Agreement 
No Impact 
 Unidirectional DIF Conditions 
 Condition 1 2 1.00 
 Condition 2 4 .99 
 Condition 3 8 .82 
  

Balanced-Bidirectional DIF Conditions 
 Condition 4 2 1.00 
 Condition 5 4 1.00 
 Condition 6 8 .80 
 
Impact 
 Unidirectional DIF Conditions 
 Condition 1 2 .99 
 Condition 2 4 .98 
 Condition 3 8 .82 
  

Balanced-Bidirectional DIF Conditions 
 Condition 4 2 1.00 
 Condition 5 4 1.00 
 Condition 6 8 .70 
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Table 16.  Average Agreement Between IPR-based NCDIF and LR Tests across True 

DIF Items for N=500 
 

Impact Condition No. of DIF Items Agreement 
No Impact 
 Unidirectional DIF Conditions 
 Condition 1 2 1.00 
 Condition 2 4 .97 
 Condition 3 8 .76 
  

Balanced-Bidirectional DIF Conditions 
 Condition 4 2 .99 
 Condition 5 4 .98 
 Condition 6 8 .66 
 
Impact 
 Unidirectional DIF Conditions 
 Condition 1 2 .99 
 Condition 2 4 .96 
 Condition 3 8 .71 
  

Balanced-Bidirectional DIF Conditions 
 Condition 4 2 .99 
 Condition 5 4 .97 
 Condition 6 8 .59 
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CHAPTER 7 

FIGURES 

 
 

  
 
  
 

Figure 1. Example Item Response Function 
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Figure 2.  Example IRFs for Two Items under the 2-PL Model
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Figure 3.  Examples of Boundary Response Functions for a 5-Category Item 
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Figure 4. Examples of Category Response Functions for a 5-Category Item 
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Figure 5.  Simulation Design 
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Figure 6.  Mean NCDIF Cutoffs (α=.01) as a Function of a-Parameter Values  
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Figure 7.  Mean NCDIF Item Cutoffs (α=.01) for the No Impact Null Condition 
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