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Abstract 

Nambury S. Raju (1937 – 2005) developed two model-based indices for differential item 

functioning (DIF) during his prolific career in psychometrics.  Both methods, Raju’s area 

measures (Raju, 1988) and Raju’s DFIT (Raju, van der Linden & Fleer, 1995), are based 

on quantifying the gap between item characteristic functions.  This approach provides an 

intuitive and flexible methodology for assessing DIF. The purpose of this tutorial is to 

explain DFIT and show how this methodology can be utilized in a variety of DIF 

applications.   

 

Dr. Nambury S. Raju, 1937 - 2005
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An NCME Instructional Module on Raju’s Differential Functioning of Items and Tests 
(DFIT) 

On October 27, 2005, Nambury Raju unexpectedly passed away while working 

on refining DFIT.  Raju was very excited about the arrival of the new significance test for 

DFIT and he was a few weeks shy of completing his most recent DFIT program.  His 

sudden passing, however, by all means does not indicate the end of DFIT for which he 

worked on during the past two decades.  In fact, I believe that he left us enough ground 

work to move DFIT from the theoretical concept to the common practice in the field of 

differential item functioning (DIF).  The purpose of this paper is to didactically explain 

how DFIT has been developed and describe how DFIT is simply related to the 

fundamental principle of item response theory (IRT).  Our hope is that some of the 

readers find DFIT to be amazingly simple and consider adding DFIT in his/her tool box 

of psychometrics.  

DFIT is one of the many indices proposed in the past three decades to investigate 

DIF.  DIF analyses are important in the field of educational and psychological 

measurement as they address measurement equivalence across subgroups of examinees.  

Common and popular indices include the Mantel-Hanszel technique (Holland & Thayer, 

1988), logistic regression (Swaminathan & Rogers, 1990), and SIBTEST (Shealy & Stout, 

1993).  More recently, various new methods have been introduced such as DIF effect 

variance estimators (Camilli & Penfield, 1997; Penfield & Algina, 2006), an empirical 

Bayes approach to Mantel-Haenszel DIF (Zwick, 1999), and hierarchical generalized 

linear model DIF (Kamata, 2001; Williams & Beretvas, 2006).  These DIF analyses do 

not utilize item parameter estimates from the parametric IRT calibration.   Examples of 



                                                ITEMS module on Raju’s DFIT        4          

another camp of DIF methods which makes use of the estimated item parameter from an 

IRT calibration include Lord’s chi-square (Cohen, Kim, & Baker, 1993; Lord, 1980), the 

likelihood ratio test (Thissen, Steinberg, & Wainer, 1988), area measures (Cohen et al., 

1993; Kim & Cohen, 1991; Raju, 1988), Muraki’s methods for polytomous items 

(Muraki, 1999) and the methods based on the DFIT framework (Flowers, Oshima, & 

Raju, 1999; Oshima, Raju, & Flowers, 1997; Raju, van der Linden, & Fleer, 1995). 

Two indices developed by Raju and his colleagues (area measures and DFIT) are 

two of the parametric IRT-based indices listed above.  Given the wide use of IRT 

calibration of items in large scale testing with the help of the computer programs such as 

BILOG-MG3 (Zimowski, Muraki, Mislevy, & Bock, 2002) and PARSCALE (Muraki & 

Bock, 1996) to name a few, it is only natural to make use of the estimated item 

parameters from the IRT calibration to conduct a DIF study.  If the scores are reported 

using those IRT estimates (that is, if the ability estimates, or thetas, are reported), then, 

why not report DIF also using those estimates?   Assuming one is familiar with IRT, both 

indices developed by Raju are easy to conceptualize, since DIF is defined as some type of 

difference (whether area-based or DFIT-based) between the two item characteristic 

functions (ICFs).   

Raju’s DFIT has several characteristics that make it a powerful and flexible 

approach to assessing measurement equivalence: 1.It can be used for dichotomous and 

polytomous scoring schemes.  2. It can handle both unidimensional and multidimensional 

IRT models.  3. It provides not only DIF but also differential test functioning (DTF). 4. It 

provides two types of DIF, compensatory DIF (CDIF) and noncompensatory DIF 

(NCDIF) 5. It has been extended to a variety of applications such as differential bundle 
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functioning (DBF) and conditional DIF.  These capabilities were realized over the past 15 

years.  Figure 1 shows the history of the development of DFIT. 

Given those promising properties of DFIT, Raju spent the last part of his career 

refining DFIT.  One of his last accomplishments was the development of the new 

significance test for polytomous DFIT (Raju, Oshima, Fortmann, Nering, & Kim, 2006).  

Item Response Theory Models 

Item response theory methods are used to model the functional relationship 

between item responses and an individual’s standing on an underlying latent trait, 

typically denoted by θ. When analyzing test scores, θ represents a person’s ability in a 

particular domain, but IRT models can also be applied to other types of constructs (e,g., 

personality traits, attitudes). A variety of IRT models have been developed to address 

different types of item response formats. 

For dichotomously scored items, IRT models the probability of an individual s 

answering item i correctly as a function of ability (θ).  Several dichotomous IRT models 

have been developed. Here, we will focus on the three-parameter logistic model, 
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The item characteristics are represented by the ai, bi and ci parameters. The location 

parameter, bi reflects the difficulty of the item. The discrimination parameter, ai, relates to 

the steepness of the curve. The ci parameter reflects the lower asymptote, or the 

probability that a person with extremely low ability would get the item correct. D is a 

scaling constant typically set at 1.702. 

It is useful to depict the model graphically, by plotting probability (Y-axis) 

against θ (X-axis).  The curve plotted is known as item characteristic curve (ICC) or item 
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characteristic function (ICF).  Two such curves are depicted in Figure 2.   

Polytomous IRT models have been developed to analyze items with more than 

two response categories, such as data from attitude questionnaires. Here we will focus on 

Samejima’s (1969) graded response model (GRM), although the DFIT framework can 

also be adapted for other polytomous models as well. The GRM is designed for ordered 

response categories.  

Polytomous IRT models require the estimation of multiple IRFs representing the 

different response categories. For an item with m response categories, there will be m-1 

boundary response functions (BRF). A BRF represents the probability of person s 

responding above response category k on item i,  
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where bik is a location parameter that designates the boundary between response 

categories k and k+1, and ai is the item discrimination parameter. 

The probability of responding in a particular response category can be computed 

from the difference between adjacent BRFs. This function is referred to as the category 

response function (CRF): 
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Because the first and last response categories lack an adjacent boundary, Samejima (1969) 

defined )(*
0 θiP = 1, and )(* θimP = 0. There will be as many CRFs for an item as there are 

response categories.  

 It is also useful to generate a single function relating responses on an item to 

ability.  The expected score of individual s on item i, ESsi(θs), can be defined as a 
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weighted average of the category values, where the weights reflect the probability of the 

individual selecting each category (i.e, the CRFs),  
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where Xik is the value assigned to category k on item i. For a dichotomously scored item, 

the expected score function is equal to the ICF. 

 The total score on a test can be defined as the sum of the scores on the individual 

items. This total test score can also be modeled as a function of ability and the resulting 

curve is called the test characteristic function (TCF). The TCF is defined as sum of 

expected score functions across n items, 
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 DFIT statistics rely on item parameter estimates from an IRT model such as those 

described above. As such, DFIT analysis will be useful only when these item parameters 

are accurately estimated. Before conducting DFIT analysis, it is strongly recommended 

that researchers check the assumptions of the particular IRT model they are using (e.g., 

unidimensionality, model fit), and proceed with DFIT analysis only if these assumptions 

are met. Methods for evaluating IRT model assumptions are described in Hambleton, 

Swaminathan and Rogers (1991). 

 In addition, accurate parameter estimation typically requires large samples of 

examinees, and DFIT is not recommended for small samples. For dichotomous IRT 

models, the required sample size will depend on the number of parameters estimated: N > 

200 for the one-parameter model, N > 500 for the 2-parameter model, and N > 1000 for 

the three parameter model (Crocker & Algina, 1986). For polytomous IRT models, N > 
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500 is recommended (Reise & Yu, 1990). 

Differential Functioning of Items and Tests 

DFIT begins with separate item parameter calibrations for two groups. The 

resulting ICFs are then compared to determine whether DIF exists. One of the major 

advantages of IRT over the classical test theory is that the ICFs are invariant over 

subgroups of examinees (Hambleton et al., 1991).  This fundamental property makes IRT 

an excellent choice for the analysis of differential functioning of items across groups. 

Simply put, if there is no DIF, the ICF from the focal group (traditionally, it is the 

minority group) should be the same as ICF from the reference group (traditionally, it is 

the non-minority group) when they are put on the common scale. If the ICFs are not the 

same, the item responses do not carry the same meaning for individuals from different 

groups, and the use of test scores to make comparisons across groups may be 

inappropriate. 

Even though IRT parameters are invariant over subgroups, the scaling of the IRT 

model is arbitrary, and parameter estimates from separate calibrations will not necessarily 

be on the same scale. Therefore, before comparing ICFs the two calibrations must be put 

on a common scale using a process called linking or equating.  A variety of linking 

methods have been developed (Kolen & Brenan, 2004), and there are various linking 

software programs one can use, such as EQUATE (Baker, 1993) for dichotomous and 

polytomous models, or IPLINK (Lee & Oshima, 1996) for dichotomous and 

multidimensional models.   

Linking requires the identification of a set of anchor items that are free of DIF, 

and it is generally not possible to identify these items prior to the DIF analysis. To get 
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around this problem, two-stage linking is recommended (Candell & Drasgow, 1988). 

Initially, the scales are linked using all items as anchor items. Then an initial DFIT 

analysis identifies items with large DIF. A second stage linking is conducted using the 

remaining non-DIF items.  The linking coefficients obtained from the second-stage 

linking are then used for calculating the final DFIT indices. 

Even after linking, the two ICFs from the focal group and the reference group will 

never be identical, even when there is no DIF.  One has to, of course, allow for sampling 

error. However, the gap can be larger than what would be expected due to sampling.  

Figure 2 depicts the gap between two curves.  Where there is a gap, the probability of 

answering an item at a given θ is not the same for the focal group and the reference group.  

For example, in Figure 2, the probability of answering an item correctly is higher for the 

focal group than the reference group for most of the theta range.  Therefore, this 

particular item favors the focal group. 

Can this gap be an index of DIF?  Certainly, and many indices have been 

proposed.  The most obvious would be to measure the area between the two ICFs (area 

measures by Raju, 1988).  The larger the area is, the larger the DIF is.  The standard error 

associated with the area was also developed (Raju, 1990) so that a significance test can be 

conducted.  A limitation of the area measures is that differences between ICFs at all 

levels of θ contribute equally to the measure of DIF. However, a difference between ICFs 

will be of greater importance if it occurs in a theta range where there are many examinees. 

Raju must have realized the shortcomings of the area measures, as he soon developed 

another measure, DFIT (Raju, van der Linden & Fleer, 1995).   In the DFIT framework, 

the the squared difference is integrated after being multiplied by the density function of 
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ability in the focal group, and therefore represents the typical magnitude of the gap in the 

actual ability range of interest. 

Non-compensatory DIF 

The first DIF index in the DFIT framework is noncompensatory DIF (NCDIF), 

which is defined as the average squared distance between the ICFs for the focal and 

reference groups. For a dichotomous IRT model, the gap is defined as the difference in 

the probability of a correct response, 

 )()()( θθθ iRiFi PPd −= . (6) 

For a polytomous IRT model, the gap is defined as the difference in expected scores for 

the focal and reference groups, 

 )()()( θθθ iRiFi ESESd −= . (7) 

In either case, NCDIF is defined as the expected value of the squared distance,  

 ( )2
i F iNCDIF E d θ⎡ ⎤= ⎣ ⎦ , (8) 

where EF denotes the expectation taken over the θ distribution from the focal group. 

 Taking the square of the d is important so that differences in opposite directions 

will not cancel each other out. This allows NCDIF to capture both uniform and non-

uniform DIF. When the ICFs differ only on the b parameters, DIF is called uniform, and 

direction of the gap will be the same across the ability distribution (as in Figure 2).  Non-

uniform DIF occurs when the a parameters differ across groups. In this case, the focal 

group curve will be higher at some ability levels, but lower at others.  When DIF is non-

uniform, differences in both directions will contribute to NCDIF.  

Differential Test Functioning 

One of the advantages of the DFIT framework is the ability to assess differential 
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functioning not only at the item level, but at the test level.  DTF is similar to NCDIF, 

except that the two curves being compared are the test characteristics functions (TCFs), 

 )()()( θθθ RF TTD −= . (9) 

Two such curves are depicted in Figure 3. DTF is defined as the expected value of the 

squared difference between focal and reference groups, where the expectation is taken 

across the θ distribution from the focal group, 

 ( )2
FDTF E D θ⎡ ⎤= ⎣ ⎦ . (10) 

Despite the similarity in how NCDIF and DTF are defined, the relationship 

between the two statistics is not straightforward. Like most item-level DIF indices, 

NCDIF assumes that all items other than the studies item are DIF free. DTF, on the other 

hand, depends not only on the level of DIF on each item, but also the pattern of DIF 

across items. Thus, removing an item with large NCDIF will not necessarily result in a 

large decrease in DTF. A third DFIT index, CDIF, better reflects the item’s contribution 

to DTF. 

Compensatory DIF 

 By taking the item covariances into account, Raju et al. (1995) were able to 

develop another index called CDIF (compensatory DIF) which relates item and test level 

differential functioning in an amazingly simple relationship. CDIF is defined as  

 ( ) ( ) DdiiFi i
DdCovDdECDIF μμ+== , , (11)     

where Cov stands for covariance.  The CDIF index is additive such that: 
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The CDIF index is unique among DIF indices due to its additive nature.  A 
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researcher can investigate the net effect of removing certain items on DTF.  Theoretically 

speaking, it is possible for an item to have NCDIF but not CDIF.  For example, if one 

item favors the focal group (thus showing NCDIF) and another item favors the reference 

group at the same amount (thus again showing NCDIF), the DIF on the two items will 

cancel out.  Neither item will show CDIF, and there would be no DTF.   

The concept of compensatory DIF deserves further investigation as it helps test 

developers focus on differential functioning at the test level and not at the item level.  It is 

not always easy or practical to generate totally gender-free or ethnicity-free (or any 

subgroup-free) items.  With the help of the CDIF index, one can try to develop a test with 

the least amount of DTF. 

Extensions to Other Models 

In the DFIT framework, the extensions of NCDIF, CDIF, and DTF to more 

complex IRT models are straightforward.  We have seen that DIFT can be generalized 

from the dichotomous case to the polytomous case by replacing the item probability, P(θ) 

with the expected score, ES(θ). This was demonstrated using the GRM. Other 

polytomous models will differ only in the details of computing the expected score.  

For multidimensional IRT models, the only difference is reflected in how one 

calculates the ICF.  The ICF will be calculated based on multiple thetas in the 

multidimensional models.  Once ( )T θ (see Equation 5) is calculated accordingly, the 

definitions of DFIT indices stay the same (Oshima, Raju & Flowers, 1997). 

Differential Bundle Functioning 

Besides the item-level and the test-level differential functioning, recently more 

attentions have been paid at the item-bundle level (Girls, Bisanz, Bisanz, Boughton, & 
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Khaliq, 2001).  Differential Bundle Functioning (DBF) can help researchers identify 

possible cause of DIF as well as examining differential functioning for a cluster of items 

such as those from reading paragraphs.  Not surprisingly, due to its additive nature of the 

DFIT framework, defining DBF is straightforward.  Bundle NCDIF is basically DTF for 

the bundle.  Bundle CDIF is simply the sum of item CDIF.  The sum of bundle CDIF, 

then, is DTF.  More detailed explanations can be found in Oshima, Raju, Flowers, and 

Slinde (1998).  

Conditional DFIT 

Just as DBF focuses on a cluster of items, it is also possible to examine DFIT for 

clusters of examinees. DFIT statistics are computed by taking an expected value across 

examinee ability levels.  Conditional DFIT (Oshima, Raju, & Domaleski, 2006) is 

defined by taking the expectation across a subset of examinees.  By doing so, one can 

examine DIF/DTF/DBF for a certain group of people.  For example, if a test has a cutoff 

score, it is of particular importance to examine DIF/DTF/DBF around the cutoff score.  

One can also examine DIF/DTF/DBF for a subgroup of interest.  For example, one can 

assess gender DIF separately for each ethnic group.   

Significance Tests in the DFIT Framework 

Raju et al. (1995) originally developed significance tests for DFIT based on the 

chi-square statistic.  Tests were developed for both NCDIF and DTF. The significance of 

CDIF is not tested directly.  Instead, items with large CDIF are removed one by one until 

DTF reaches non-significance.  Those removed CDIF items are then considered 

significant. 

These chi-square tests, however, turned out to be overly sensitive in large samples 
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and tended to falsely identified non-DIF items as having significant DIF.  Based on 

simulation studies, he then recommended a predetermined cutoff score of NCDIF > .006 

for the dichotomous items, or NCDIF > .006 * (k - 1)2 for polytomous items.  This one-

size-fits-all approach, of course, was too simplistic. Additional simulations found that the 

appropriate cutoff depended on factors such as the sample size and the particular IRT 

model used (Bolt, 2002; Chamblee, 1998). Therefore, the cutoff scores developed in prior 

research may not generalize to all situations. Further, typical practitioners may not have 

the expertise or time to conduct their own simulations. Until recently, the lack of a 

generalizable significance test for NCDIF was a major impediment to its use. 

Recently, a new significance test for the NCDIF significance test was proposed 

for the dichotomous case. The item parameter replication (IPR) method (Oshima, Raju & 

Nanda, 2006) provides a means of deriving cutoff values that are tailored to a particular 

data set.  The IPR method begins with estimates of item parameters for the focal group 

and the sampling variances and covariances of these estimates.  Based on these initial 

estimates, a large number of replications of item parameters are then generated with the 

restriction that the expectation of the newly generated item parameters equals the initial 

estimates with the same sampling variance/covariance structure.   

Because they are generated from the same distribution, any differences in the sets 

of estimates must be due to sampling error. Pairs of samples can then be used to compute 

DIF statistics. This produces an empirical sampling distribution of NCDIF under the null 

hypothesis that focal and reference groups have identical parameters.  The resulting 

NCDIF values are then ranked and the cutoff is set at the percentile corresponding to the 

desired alpha level (e.g., the 99th percentile for α=.01).  
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The IPR method has been implemented in the latest version of the DFIT software 

(Raju, Oshima & Wolach, 2005). Raju was working on extending the IPR method to the 

polytomous case when he passed away. Additional information on this work can be found 

in Raju, Oshima, Fortmann, Nering & Kim (2006). 

Conclusions 

In this instructional module, DFIT was introduced in the didactic tone as a 

psychometric tool for assessing measurement equivalence.  It was our intension that 

DFIT is explained in the simplest language possible so that a wide audience of students 

and professionals in the educational measurement field would find it easy to understand 

and consider making use of DIF techniques in practice.  This module is like a series of 

snap shots of DFIT and it is not meant to be comprehensive.  Therefore, we strongly 

recommend that the interested reader obtain the original articles.   

DFIT was one of the many psychometric contributions of Nambury Raju during 

his distinguished career. Dr. Raju was an accomplished mathematician, and he had a 

knack of simplifying a lengthy and complex problem to an amazingly simple equation. 

The DFIT framework is one of those operations.  
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Self-Test 

True or False 
 

1. The Mantal-Hanszel technique and DFIT are similar in the sense that they both 
utilize item parameter estimates from a parametric IRT calibration. 

2. DFIT can be used both for dichotomous items and polytomous items. 
3. DFIT can be used both for unidimensional IRT models and multidimensional IRT 

models. 
4. DFIT can handle any sample sizes. 
5. DFIT requires separate calibrations of IRT parameters for the focal group and the 

reference group. 
6. If there is no DIF, the estimated item parameters from the focal group and the 

reference group would be identical. 
7. If DTF is not significant, one can safely assume there is no DIF. 
8. DFIT indices would be affected by the distribution shape of the focal group. 
9. DFIT cannot identify non-uniform DIF. 
10. The sum of NCDIF equals DTF. 
11. If you remove significant CDIF items, DTF would not be significant. 
12. NCDIF assumes that all the items but the studied item are DIF free.  
13. NCDIF and CDIF can be calculated at the level of item bundles. 
14. The recommended test for significance in DFIT is the chi-square test. 
15. Dr. Raju had a prolific career in psychometrics.  

Key to Self-Test 
 

1. F.  The Mantal-Hanszel technique, as well as other popular techniques (logistic 
regression, SIBTEST, etc.), do not require item parameter calibration.  DFIT 
requires IRT item calibrations using software such as BILOG-MG3, Parscale, or 
NOHARM (Frasier, 1988). 

2. T. This is one of the advantages for DFIT.  In the dichotomous case, DFIT is 
calculated based on the difference between the ICFs of the focal group and the 
reference group. In the polytomous case, it is calculated based on the expected 
score (ES) difference.  Therefore, any polytomous model which produces an ES 
can be used in the DFIT framework.  Raju’s original work in the polytomous case 
uses Samejima’s graded response model.   

3. T.  Except for the need to integrate over multiple ability dimensions, the DFIT 
framework stays the same regardless of the number of dimensions the test 
measures.  DFIT has been developed for unidimensional dichotomous models, 
unidimensional polytomous models, and multidimensional dichotomous models 
so far.  Work is still in progress for multidimensional polytomous models. 
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4. F.  DFIT is not recommended for small sample sizes. DFIT is based on the item 
parameter estimates from an IRT calibration program.  If items are not estimated 
well, then, the following DFIT analysis would be erroneous.  (This is similar to 
the problem of measurement and statistics in research.  That is, if variables are not 
measured well, then the subsequent statistical analyses would be erroneous.)  The 
recommended sample sizes for DFIT (which are equal to the recommended 
sample sizes for calibrating various IRT models) can be found in the text above. 
Please note that the sample sizes listed there are required for EACH group (focal 
group and reference group).   

5. T. For the current version of DFIT, one needs to calibrate items separately for the 
focal group and the reference group.  Then, the items need to be put on a common 
scale through linking.  The DFIT research has been conducted primarily using the 
linking procedure called the test characteristic curve method (Stocking & Lord, 
1983).  However, there are other linking methods that may be used.  In the DFIT 
research, we have found that linking is a crucial part in the performance of DFIT.  
We also found that the two-stage linking is an essential part of DFIT, especially 
when the number of DIF items is large.   

6. F.  If there is no DIF, the “true” (not “estimated”) item parameters from the focal 
group and the reference group would be identical.  In practice, we do not know 
the true item parameters.  Therefore, we will be dealing with two sets of item 
parameters (from the focal group and from the reference group) that are different 
even after linking.  Then, we need to determine if the difference was within the 
sampling/estimation error or not.  The new significance test (Oshima, Raju, & 
Nanda, 2007) addresses this issue.  

7. F.  Even if DTF is not significant, it is possible to get significant NCDIF items.  
For example, suppose one is conducting a DIF study based on gender.  Say, three 
items favor males and three items favor females at about the same degree.  Those 
six items would show significant NCDIF, but DTF would not be significant 
assuming all other items are DIF-free.    On the other hand, when DTF is not 
significant, one can say there is no CDIF.  Therefore, it is possible that an item 
shows significant NCDIF but not significant CDIF. 

8. T.  DTF is the average squared distance for two item response functions over the 
“focal” group.  Therefore, theoretically, the ability distribution of the focal group 
would affect the DFIT indices.  For example, one would get different values of 
DFIT indices if it is skewed as opposed to normally distributed.  One might 
wonder why the focal group, and not the reference group.  This question was 
asked to Dr. Raju many times.  His response was that the focus of a DIF study 
should be on the focal group.  

9. F.  DFIT can identify both uniform and non-uniform DIF.  The detection of DIF 
depends on the magnitude of DIF whether or not it is uniform or non-uniform. 
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10. F.  The sum of CDIF equals DTF.  The sum of NCDIF does not equal DTF.   
11. T.  In the DFIT framework, large CDIF items are removed one by one until DTF 

reaches non-significance.  Those removed CDIF items are then considered 
significant.  Therefore, after removing all those significant CDIF items, DTF 
should be non-significant. 

12. T.  CDIF, on the other hand, is affected by the presence of DIF on the other items 
on the test.   

13. T.  The bundle CDIF is simply the sum of item CDIF, just like the sum of CDIF 
was DTF.  The bundle NCDIF is not the sum of item NCDIF.  Instead, the bundle 
NCDIF is the DTF index computed on the items in the bundle. 

14. F.  Although Raju developed a significance test based on the chi-square test in 
early 90’s, it is not the recommended significance test today.  The new 
significance test developed recently offers the cutoff score for each item based on 
the estimated sampling distribution of item parameters under the null (no-DIF) 
condition.  Although the test is calculation intensive, the process is built in inside 
the new DFIT computer program.  Therefore, from the user’s end, the 
significance test is automatically conducted. 

15. T.  Dr. Raju “was a prolific writer and highly involved in the profession: the 
author of over 150 publications and presentations, member of more than 8 
professional organizations, and editor or reviewer for more than 24 professional 
journals.  … Dr. Raju supervised over 32 doctoral dissertations and 20 master 
theses and was held in the highest regard by all for his warm heart, strong intellect, 
and unflagging integrity.” (“PsychLink”, 2006).  As his colleagues and friends, 
we cannot agree more about his integrity and kindness to others.  As many have 
said, he was a great man. 
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Figure 1. History of DFIT. 
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Figure 2.  IRT and DFIT 
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Figure 3.  A graphic presentation of DTF. 
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