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A MONTE CARLO STUDY INVESTIGATING THE INFLUENCE OF ITEM 

DISCRIMINATION, CATEGORY INTERSECTION PARAMETERS,  
AND DIFFERENTIAL ITEM FUNCTIONING PATTERNS 

 ON THE DETECTION OF DIFFERENTIAL ITEM  
FUNCTIONING IN POLYTOMOUS ITEMS 

by 
Carol Thurman 

ABSTRACT 
The increased use of polytomous item formats has led assessment developers to pay 

greater attention to the detection of differential item functioning (DIF) in these items. DIF 

occurs when an item performs differently for two contrasting groups of respondents (e.g., 

males versus females) after controlling for differences in the abilities of the groups. 

Determining whether the difference in performance on an item between two demographic 

groups is due to between group differences in ability or some form of unfairness in the 

item is a more complex task for a polytomous item, because of its many score categories, 

than for a dichotomous item. Effective DIF detection methods must be able to locate DIF 

within each of these various score categories.  

The Mantel, Generalized Mantel Haenszel (GMH), and Logistic Regression (LR) 

are three of several DIF detection methods that are able to test for DIF in polytomous 

items. There have been relatively few studies on the effectiveness of polytomous 

procedures to detect DIF; and of those studies, only a very small percentage have 

examined the efficiency of the Mantel, GMH, and LR procedures when item 

discrimination magnitudes and category intersection parameters vary and when there are 

different patterns of DIF (e.g., balanced versus constant) within score categories. 

This Monte Carlo simulation study compared the Type I error and power of the 

Mantel, GMH, and OLR (LR method for ordinal data) procedures when variation 

occurred in 1) the item discrimination parameters, 2) category intersection parameters, 3) 



 

DIF patterns within score categories, and 4) the average latent traits between the 

reference and focal groups. 

Results of this investigation showed that high item discrimination levels were 

directly related to increased DIF detection rates. The location of the difficulty parameters 

was also found to have a direct effect on DIF detection rates. Additionally, depending on 

item difficulty, DIF magnitudes and patterns within score categories were found to 

impact DIF detection rates and finally, DIF detection power increased as DIF magnitudes 

became larger. The GMH outperformed the Mantel and OLR and is recommended for use 

with polytomous data when the item discrimination varies across items. 
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CHAPTER 1 

INTRODUCTION 

The detection of differential item functioning in high-stake assessments such as 

licensure, and credentialing examinations has become an important issue in recent years 

(Swaminathan & Rogers, 1990).  The increased use of these high-stake measures has led 

to efforts nationwide to promote fairness in testing by constructing assessments that tap 

into an examinee’s deep level of understanding. Consequently, many of these 

performance measures consist entirely of polytomous items rather than multiple choice 

items (Wang & Su, 2004; Zwick, Donoghue, & Grima, 1993). Indeed, the use of 

polytomous item formats nationwide has led to increased attention to the detection of 

differential item functioning in these items (Bolt, 2002; Chang, Mazzeo & Roussos, 

1996; Wang & Su, 2004). Differential item functioning (DIF) occurs when an item 

performs differently for two contrasting groups of respondents (e.g., males vs females) 

after controlling for differences in the abilities of the groups (Angoff, 1993). Determining 

whether the difference in performance on an item between two demographic groups is 

due to between group differences in ability or some form of unfairness in the item is a 

more complex task for a polytomous item because of its many score categories, than for a 

dichotomous item. Because of the number of score levels in a polytomous item, DIF can 

occur within all of the score categories or within some subsets of score categories within 

the item, hence requiring testing for DIF at each score level (French & Miller, 1996; 

Kristjansson, McDowell, & Zumbo, 2005). DIF detection methods capable of detecting 
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DIF in all score categories are essential if issues of fairness in testing are to be adequately 

addressed. 

The Mantel (Mantel, 1963) and the GMH (GMH; Mantel & Haenszel, 1959; 

Somes, 1986), two direct extensions of the very popular dichotomous DIF detection 

technique - the Mantel-Haenszel - are two methods that can test for DIF at each score 

level. The Mantel compares the item means after conditioning on a matching variable 

while the GMH compares the entire response distribution of the reference and focal 

groups. The logistic regression (LR) procedure (Rogers & Swaminathan, 1993; 

Swaminathan & Rogers, 1990) has also emerged as a popular DIF detection method, as 

well. The LR is a model based procedure that can provide more specific information on 

the whereabouts of DIF and the type of DIF that is present. (The LR procedure is 

oftentimes referred to as ordinal logistic regression (OLR) when the dependent variable is 

ordered data).  

While there has been a marked increase in the use of polytomous assessments in 

education, there are relatively few studies on the effectiveness of the Mantel, GMH, and 

the OLR procedures to detect DIF in polytomous item, specifically when an item’s 

difficulty parameters vary among response categories resulting in different patterns of 

DIF. These patterns of DIF can occur because within polytomous items, transitioning 

from one response category to the next can increase the likelihood that the transition is 

more difficult for one group of examinees than the other. For example, in a four category 

item, DIF might reside in the transition from score category two to score category three 

but not in the other two response categories. Therefore, it is important to examine what 

effects differing patterns of DIF have on various DIF detection procedures, particularly 
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when the discrepancies in item difficulty occur within various score categories. 

Additionally, the size of DIF occurring within these response categories may have an 

impact on DIF detection rates. This too, is an area that merits further investigation. 

Item discrimination is another factor that has been shown to influence DIF 

detection rates. Most assessments are developed for the sole purpose of providing 

information about test takers’ differences either on the construct purportedly measured by 

the test or on some external criterion which the test scores are supposed to predict 

(Crocker & Algina, 1986). In either case, the parameter of interest must provide 

information about how well each item effectively discriminates between examinees of 

high and low ability on the construct the test was developed to measure. The item 

discrimination parameter is one such factor that can provide this essential piece of 

information. Therefore, it is important to examine the effect of various item 

discrimination parameter magnitudes on DIF detection rates for polytomously scored 

items especially when they occur in an item’s different response categories.  

Although, there have been a number of studies (Hidalgo & Lopez-Pina, 2004; 

Rogers & Swaminathan, 1993; Spray & Miller, 1994) that have examined DIF caused by 

differences in the discrimination (a) values for the reference and focal group within 

conditions, known as non-uniform DIF, this study focused on the conceptually simpler 

case where within conditions the a-values were equal for the reference and focal groups 

even while other factors varied. This scenario within conditions, in which the a-values 

are equal for both groups, is known as uniform DIF. In this investigation only conditions 

in which uniform DIF is present was investigated. That is, in this study no DIF was added 

to the discrimination parameter, rather, in simulating uniform DIF, the a parameter was 
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kept the same for the reference and focal groups at each level of the b parameter. The b 

parameter varied, however, causing the item to be more difficult for one of the groups (in 

most cases, the focal group). 

In addition to the impact that item discrimination, item difficulty, DIF patterns of 

DIF, and size of DIF, can have on DIF detection methods, some studies (e.g., 

Ankenmann, Witt, & Dunbar, 1999; Wang & Su, 2004) have shown that large differences 

in group ability can affect DIF detection rates in polytomous items. How large group 

ability differences impact the Mantel, GMH, and OLR procedures under a variety of 

study conditions is an area in need of further investigation.  

In sum, two major sources of test information, item discrimination and item 

difficulty, were examined in the context of DIF occurring within response categories, 

under differing patterns, and under varying DIF magnitudes. That is, this Monte Carlo 

simulation study compared the Type I error and power of the Mantel, GMH, and OLR 

procedures to detect DIF for tests that contain only polytomous items under conditions in 

which variation occurred in (a) the item discrimination parameter values (b) category 

intersection parameter values (c) DIF magnitudes (d) score categories containing various 

DIF patterns; and (d) differences in average latent trait between groups. Specifically, this 

investigation sought to answer the following question: When a test contains only 

polytomous items, to what extent are the power and Type I error rates of the Mantel, 

GMH, and OLR affected by the variation in 1) the item discrimination parameter values, 

2) category intersection parameter values, 3) DIF patterns within score categories, and 4) 

average latent trait differences between the reference and focal groups? 
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CHAPTER 2 

REVIEW OF THE LITERATURE 

Educational reform efforts, driven by legal and ethical challenges, have led to 

increased demands on test developers to provide more equitable approaches to testing. To 

meet these demands for fair testing, a variety of alternatives to the traditional 

dichotomously scored multiple-choice item have been developed (Potenza & Dorans, 

1995; Zwick et al., 1993). These alternatives include item formats with multi-steps (i.e., 

polytomous items) that provide more opportunities to gather examinee information than 

their dichotomous counterparts. Cognitive assessments, such as constructed responses 

and essays, are examples of item formats that can gather detailed information about an 

examinee’s deep level of understanding. In recent years, nationwide testing and 

assessment programs such as the College Board Advanced Placement tests and the 

National Assessment of Educational Progress (NAEP) have included polytomously 

scored items in their assessments (Zwick, Donoghue, & Grima, 1993). In fact, as of 1993, 

half of all statewide writing assessment programs relied solely on writing samples to 

assess students’ levels of proficiency in grammar, spelling, and sentence construction 

(Welch & Hoover, 1993). 

Many performance assessments, which may include a writing component, are 

used for selection purposes; because of this trend, in recent years there has been increased 

attention by test developers to ensure that tests are fair to all applicants (Zumbo, 1999). 

This phenomenon has led to an increase in the development of performance assessments 
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that can provide more information on the extent of an examinee’s level of understanding 

(Welch & Hoover, 1993). Indeed, the use of open-ended and constructed-response 

instruments to assess educational outcomes has greatly increased during the last decade 

(Ankenmann, Witt, & Dunbar, 1999).  

In an attempt to meet the goal of gaining more examinee information, test 

developers, particularly within the educational assessment arena, are increasingly 

utilizing testing instruments that can assess information from all item choices rather than 

from only the two score categories of right or wrong (De Ayala, 1993). Essays and 

constructed response items where examinees are required to write a lengthy response to a 

question or statement also require a scoring method that is capable of reflecting the 

examinee’s depth of knowledge. Performance task items (e.g., student portfolios) 

requiring an examinee to demonstrate his or her understanding of the concept by 

developing a product would also demand a more complex scoring method other than 

right/wrong if detailed information is to be gathered on the examinee’s level of 

comprehension. Additionally, many mathematics tests are composed partially, if not 

entirely, of many problems that are multi-step. Partial credit is often awarded for 

evidence that the student has understood the problem, has adopted an appropriate 

strategy, has attempted to solve the problem but has committed a computational error 

(Masters, 1984). These types of item formats typically require item response models that 

can represent the relationship between examinee trait level and the probability of 

responding in a particular category. 
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Polytomous IRT Models 

The increased information on the underlying trait that multiple response 

categories provide is one of the main reasons for the proliferation of polytomous item 

formats (Embretson & Reise, 2000; Ostini & Nering, 2006). An item response theory 

(IRT) framework can be used to understand the relationship between an examinee’s item 

performance and his/her underlying trait. To illustrate this relationship, first a 

dichotomous IRT model will be used. This relationship can be modeled by a 

monotonically increasing function known as the item characteristic curve (ICC). The ICC 

models the probability of a correct response given the examinee’s ability and the item’s 

characteristics. The form of an ICC describes how changes in trait level relate to the 

probability associated with moving from one response category to the next along the 

entire trait continuum (Embretson & Reise, 2000; Hambleton, Swaminathan, & Rogers, 

1991). That is, the ICC specifies that as the level of the trait increases, so too does the 

probability of success on an item. In dichotomous items the relationship between the item 

characteristic and the underlying trait is modeled by a single monotonically increasing 

curve, providing information for at most one trait level. Figure 1 shows an ICC for a one 

parameter logistic model, also known as the Rasch model, the simplest and the most 

widely used of the IRT models (Hambleton, Swaminathan, & Rogers, 1991). The primary 

assumption of the one-parameter model is that the item difficulty is the only item 

characteristic that influences examinee performance. ICCs for the one-parameter logistic 

model are represented by the following equation: 

 P i (  ) = )(

)(

1 ib

ib

e
e





 



 (1) 
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where Pi (θ) is the probability that a randomly chosen examinee with ability, θ, answers 

item i correctly. The natural log base (2.718) is represented by e. The item’s difficulty 

parameter, b, indicates an ICC’s location on the ability scale where the likelihood of a 

correct response is 0.5. Examinees with higher b values have higher probabilities of 

answering the item correctly than do examinees with lower b values regardless of group 

membership (Hambleton et al., 1991).  
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Figure 1. ICC for a dichotomous item where b=1.0. 

Unlike a dichotomous item, a polytomous item has multiple response categories 

and must be modeled by multiple curves called category response curves (CRCs). CRCs 

represent the probability of an examinee, at a given trait level, responding in a particular 

category (Embretson & Reise, 2000). The CRCs for a polytomous item are located above 
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the various trait levels, thereby providing multiple pieces of information along the trait 

continuum. Figure 2 illustrates category response curves for a polytomous item. The CRC 

of Figure 2 depicts multiple trait levels along the latent trait continuum. It also shows 

how multiple b parameters, located at each category response curve intersection, indicate 

where on the latent trait continuum a category response becomes more probable for one 

person than another when their ability levels differ (Embretson & Reise, 2000). A 

commonly used polytomous model to describe examinee data once the items have been 

scored is the Generalized Partial Credit Model (GPCM; Muraki, 1992, 1993).  

Generalized Partial Credit Model 

Muraki’s (1992, 1993) Generalized Partial Credit Model (GPCM) is a polytomous 

IRT model that is a generalization of Master’s (1982) Partial Credit Model (PCM). The 

GPCM, unlike the PCM, allows slope parameters within items to vary (e.g., allows for a 

discrimination parameter). The GPCM can be used for analyzing test items that award 

partial credit for the successful completion of at least one of the steps in a multiple step 

problem. Thus, the GPCM is naturally suited for modeling item responses from cognitive 

tests (e.g. math problems, essays) where partially correct answers are possible 

(Embretson & Reise, 2000). The GPCM is also appropriate for rating scale items, such as 

the Likert scale used in many attitudinal or personality assessments, in which respondents 

rate their beliefs and where items share a fixed set of rating points (De Ayala, 1993;  
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Figure 2. Category response curves for a 5-category polytomous item under the 
Generalized Partial Credit Model where α = 0.683, b1  = -3.513, b2 = -0.041, b3 = 0.182, 
and b4 = 2.808. The parameter values for this figure were taken from Embretson (2000). 

Embretson & Reise, 2000). The GPCM requires that the steps within an item be 

completed in order, although the steps need not be in order of difficulty or be equally 

difficult (De Ayala, 1993). 

Masters (1984) provided an example of a mathematics problem that illustrated the 

PCM which can also be applied to the GPCM: “How many pages are there in a book that 

requires 2989 digits to number the pages?” (p. 20). The mathematics problem required 

an examinee to execute five ordered levels of performance to arrive at the correct 

solution. One point was awarded for the first step if the examinee demonstrated some 

evidence of having understood the problem. Another point was awarded when the 

examinee showed evidence of having adopted a strategy that enabled him/her to work 
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toward a solution. The third point was acquired when the strategy was pursued to near 

completion of the problem and the fourth point was awarded for a correct solution. If 

steps 2, 3, and 4 were answered incorrectly, however, no credit was awarded.  

The GPCM, unlike the PCM, does not belong to the family of Rasch models 

because item slopes may vary. Allowing the slopes to vary assumes that one item can be 

more effective than another in discriminating among examinees thus providing more 

insight into the test item characteristics than the PCM (Ostini & Nering, 2006). When the 

GPCM is used, the probability that an individual with a given trait level, θ, will obtain a 

category score of x for item i with mi + 1 (from 0 to mi) categories is given by: 

P ix ( ) =  

 



 







M

r
ij

r

j
i

ij

x

j
i

0 0

0

)]([exp

)(exp




          (2) 

         

where the item discrimination parameter or slope is represented by αi and  δij  is the jth 

category intersection parameter or item step difficulty for item i. Assuming that the 

examinee has completed previous steps, the category intersection parameters represent 

the point on the latent-trait scale where one category response becomes more likely than 

the previous step (Embretson, 2000).   

While the category intersection parameters provide difficulty information, the 

slope parameter, αi, can be viewed as “indicating [sic] the degree to which categorical 

responses vary among items as θ level changes” (Embretson, 2000, p. 112). In the 

GPCM, there is one discrimination parameter, αi, for each item. Note from Figure 2 that 

as the slope parameter becomes smaller than 1.0 the CRCs become less peaked, while as 



12 

 

the slope parameter becomes larger than 1.0 the CRCs tend to become more peaked. 

Figure 3 illustrates an item with a large slope (α = 1.499). Note how peaked the curves 

are relative to the model in Figure 2. 

In the GCPM, although the response categories must be ordered, the category 

intersection parameters, δij, need not be. The greater the value of a particular δij, the 

harder a particular step is relative to other steps within an item (Embretson & Reise, 

2000). For example, the transition from Category 1 to Category 2 may be more 

cognitively demanding than the transition from Category 2 to Category 3. Within 

polytomous items, transitioning from one score category to the next can increase the 

likelihood that the transition is more difficult for one group of examinees than the other. 

This difference can exist simply because one group has a greater academic ability than 

the other; however, when both groups have equivalent abilities but transitioning from one 

response category to the next is still more difficult for one group than it is for the other, 

investigations into these differences are imperative. Differential item functioning analysis 

is one such statistical approach that addresses these kinds of discrepancies.  

Differential Item Functioning 

Ensuring that tests do not contain differential item functioning (DIF) has become 

an important part of developing equitable assessments. Methods for detection of DIF 

have grown, in large part, due to the legal and ethical need to measure respondent 

performance without bias (Gierl, Bisanz, Bisanz, Boughton, & Khaliq, 2001). DIF is 

typically identified using a statistical technique that employs a significance test to 

determine whether an item functions differently for one group of examinees over another. 

DIF occurs when individuals from different subgroups who are equivalent on a latent trait  
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Figure 3. Category response curves for a 5-category polytomous item under the 
Generalized Partial Credit Model where α = 1.499, b1  = -1.997, b2 = -0.210, b3 = 0.103, 
and b4 = 1.627. The parameter values for this figure were taken from Embretson (2000). 

such as ability, show differing probabilities of obtaining the correct response to an item 

(Hambleton et al., 1991). 

DIF analyses compare the item performance of the two groups but the comparison 

is made only on those members with the same level of ability. For example, if ability is 

estimated using the total test score, then the difference in item performance of both 

groups at various score levels would be compared. If those differences between the two 

groups at various score levels consistently occur across a large portion of the ability 

continuum, the item is said to function differentially for the two groups, and thus DIF is 

said to be present (Penfield & Lam, 2000). In DIF analyses, the subgroup under 
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investigation is referred to as the focal group, and the other, the reference group. The 

focal group most typically is the minority group of interest (e.g., African-Americans, 

females, etc.). In any high-stakes context where legal challenges on the issue of fairness 

arise it is strongly recommended that DIF analyses be conducted in order to provide 

evidence for items that are potentially biased (Zumbo, 1999). This recommendation is 

also echoed by The Standards for Educational and Psychological Testing (1999) which 

states: 

When credible research reports that differential item functioning exists 
across age, gender, racial/ethnic, cultural, disability and/or linguistic 
groups in the population of test takers in the content domain measured by 
the test, test developers should conduct appropriate studies when feasible. 
Such research should seek to detect and eliminate aspects of test design, 
content, and format that might bias test scores for particular groups. 
(p. 81) 

DIF analysis is a way of addressing concerns related to test validity and fairness. Very 

often differences in the validity of the test at the item level may be interpreted as item 

bias or result in the item or test being regarded as invalid (Williams, 1997). DIF analyses 

provide a further means of obtaining evidence that the interpretation of test scores is 

indeed accurate. 

Bias versus DIF 

According to Camilli and Shepard (1994), statistical errors and item multi-

dimensionality are the two main factors that lead to items being flagged for DIF. 

Statistical error can take the form of Type I error where items are falsely identified as 

possessing DIF; item multidimensionality occurs when a test intended to measure only 

one construct simultaneously measures two or more. For DIF to occur, it is assumed that 

examinees have been matched on ability for only one construct, the intended construct 

that the test purports to measure. When statistical evidence points to DIF (i.e., items 
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functioning differently for groups of examinees who have been matched on ability), then 

it is important to examine whether or not the discrepancy is due to such factors as Type I 

error or item multidimensionality. When DIF occurs and there is valid reason to believe 

that the source of DIF is due to one or more irrelevant constructs being measured by the 

test, item bias is said to exist. Determining whether or not a test measures one or more 

irrelevant constructs typically involves review of the items in question by an expert panel 

to identify items that appear to be more difficult for one group of examinees than another. 

In the event that an item functions differently for one of the groups, a decision must be 

made about whether to retain or delete the item from the test. However, without a 

substantive review of the item by experts, test developers would not know if the reason 

the item exhibited DIF was due to a construct-relevant or irrelevant dimension of the test. 

It is important to remember that statistical techniques employed in the detection of DIF 

provide statistical evidence that determine only whether or not an item functions 

differently in the two groups. They give no indication of whether the observed DIF 

constitutes bias (Donoghue & Allen, 1993). That is why it is vital to follow any statistical 

DIF review with a substantive review of the item by an expert panel. 

Bias infers that one group is unfairly advantaged over the other. But groups may 

differ in their response to an item for reasons other than bias, such as impact. Item impact 

occurs when examinees from different groups have differing probabilities of responding 

correctly to an item (this definition differs from that of DIF because DIF only can be said 

to occur if the groups have been matched on ability). This differing response pattern 

occurs not because the item unfairly advantages one group over another but because there 



16 

 

are true differences between the groups in the underlying ability that the item is 

measuring (Zumbo, 1999).  

Conceptually DIF is assessed by plotting the ICCs separately for each group 

under investigation and then comparing them along the trait continuum. Figure 4 is an 

example of an item that displays substantial DIF with a very large area between the two 

ICCs. This type of DIF is known as uniform DIF because the two ICCs do not cross, 

indicating that there is no interaction between ability level and group membership. 

Nonuniform DIF occurs when there is an interaction between the ability level and group 

membership. In Figure 5 the ICCs cross, indicating nonuniform DIF. Also, Figure 5 

illustrates that Group 1 is favored for those individuals who score at or below the mean 

(i.e., θ ≤ 0) and that Group 2 is favored for those scoring above the mean (i.e., θ > 0); 

supplying further evidence that nonuniform DIF exists. 

DIF Detection Methods 

DIF is detected using one of two methods – a parametric approach or a 

nonparametric approach. The parametric approach assumes a specific IRT model to 

investigate DIF whereas a nonparametric approach does not. Because parametric 

approaches rely on specific item response models to investigate DIF, model 

misspecification is often a problem as even a small amount of misfit may result in 

unacceptable levels of Type I error (Bolt, 2002). Parametric methods also require large 

sample sizes of at least 500 each for the reference and focal groups (Narayanan & 

Swaminathan, 1996; Wang & Su, 2004). In contrast, nonparametric methods are 

advantageous over parametric methods because they do not assume specific item 

response models, require large sample sizes, or intensive computation.  
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Figure 4. Uniform DIF where a = 1.2, b = 1 for group 1; a=1.2, b = 2 for group 2. 
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Figure 5. Nonuniform DIF where a = 1.2, b=0 for group 1; a =0.6, b =0 for group 2. 
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When studying DIF in dichotomous items, the Mantel-Haenszel (MH) method 

(Holland & Thayer, 1988; Mantel & Haenszel, 1959) is one of the most popular 

nonparametric DIF detection procedures. While DIF detection is predominantly used in 

the cognitive context, where answer choices are usually dichotomous, it can also be used 

in areas where items are typically polytomously scored (Furlow, Fouladi, Gagné, & 

Whittaker, 2007). For items scored polytomously, one of two direct extensions of the MH 

method are typically used; either the Mantel method (Mantel, 1963) or the generalized 

Mantel-Haenszel method (GMH; Mantel & Haenszel, 1959; Somes, 1986). The Mantel 

procedure was developed for ordered polytomous response data whereas the generalized 

Mantel-Haenszel method is used when the response categories are treated as nominal 

data. Detecting DIF in polytomous items can be challenging as DIF can reside within 

some or all score categories within an item. The Mantel and the GMH are two methods 

that test for DIF within the various score categories of an item.  

A third method for DIF detection with polytomous items is the Logistic 

Regression (LR) procedure. This method is more commonly known as the Ordinal 

Logistic Regression (OLR) procedure when the polytomous items are ordered data, such 

as Likert type item formats (i.e., not important, important, very important). One of the 

main advantages of the LR method over the GMH is its capacity to detect uniform and 

nonuniform DIF (French & Maller, 2007; Swaminathan & Rogers, 1990). Because the 

logistic regression technique is model-based it can test coefficients for significant 

uniform and nonuniform DIF separately within the same equation (French & Miller, 

1996; Kristjansson et al., 2005). In the DIF detection process, once an item is identified 

as having DIF, it is further classified as having uniform DIF if the probability of a correct 
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response is the same across all ability levels. If, however, there is an interaction between 

ability level and group membership, then the item is classified as having nonuniform 

DIF. For ordered polytomous data, the OLR technique involves recoding ordinal data into 

T – 1 dichotomous sets (where T is the number of score categories). 

Matching 

Unlike the LR procedure, both the Mantel and the GMH methods rely on 

significant row mean differences between groups to signal for potential DIF in an item. 

These row mean differences are based on observed scores. The observed scores serve as 

the matching criteria that are used to determine if there is a difference in performance on 

a given item after examinees have been matched on the estimated latent trait or some 

measure of proficiency, otherwise known as the matching variable. The matching 

variable could be thought of as a proxy for an individual’s performance or ability in the 

area that is being assessed. According to Mapuranga, Dorans, and Middleton (2008), 

“matching is a way of establishing score equivalence between groups that are of interest 

in DIF analyses” (p. 6).  When score equivalence between groups is established, DIF 

analysis is facilitated by enabling relative comparisons between the reference and focal 

groups. 

Types of matching include thin or thick matching. Thin matching uses the total 

score as the matching variable. Thick matching, however, involves pooling total score 

levels to form the matching variable. According to Donoghue and Allen (1993), thick 

matching is the preferred matching technique because 1) estimation of the cell 

frequencies for each of the levels of the matching variable is more stable and 2) more 

data can be used because fewer cells have zero frequencies. Equal interval matching is an 
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example of thick matching because the total score scale is divided into a number of equal 

widths. In equal interval matching, the researcher calculates several interval width 

combinations to find the best interval width that will yield the fewest number of cells 

with missing score data. Overly fine matching is to be avoided as it very often results in 

elimination of much of the data. In addition to equal interval matching, it is often 

recommended that extreme scores be pooled into larger widths since there are typically 

fewer scores at the extremes.  

After including all items in the total score, this matching variable then needs to be 

“purified” (Zumbo, 1999). That is, items that are flagged for DIF are omitted, and the 

scale or total score is then recalculated. The recalculated total score would then be a 

“pure” matching criterion for the subsequent DIF analyses of each item that was 

previously flagged as having DIF. This first stage is called the criterion purification stage 

(Wang & Su, 2004a). At the second stage, the refined matching score for each subsequent 

test would include the studied item as well as all of the DIF-free items. This two step 

purification procedure has been found to increase DIF detection rates by increasing 

power and reducing Type I error when the proportion of DIF items exceed 10% (Fildago, 

Mellenbergh, & Muniz, 2000; Holland & Thayer, 1988; Miller & Oshima, 1992). 

Dichotomous items: DIF detection when item discrimination and 

difficulty parameters vary. DIF detection methods for dichotomous items have been 

extensively researched; however few studies involving dichotomous items have 

examined the impact on DIF detection when both the item difficulty and discrimination 

parameters vary. Clauser, Mazor, and Hambleton (1991) conducted one of the earliest 

studies on dichotomous items to explore if varying certain item’s discrimination and 
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difficulty parameters would increase the likelihood that those items would be overlooked 

by the MH statistic. Only uniform DIF conditions were simulated as the a values were 

equal for the reference and focal groups within conditions, even while other factors 

varied. (The a values, however, were high in some conditions and low in others). These 

differing a values were examined in combination with both between group differences in 

the b parameters and various overall levels of item difficulty. 

Five data sets each containing 16 biased items were simulated. Responses were 

generated for 2000 examinees (i.e., 1000 per group) using a 3 parameter logistic (PL) 

IRT model. Additionally, to mimic conditions found in practice, item discrimination and 

difficulty parameters were generated based on estimated values from a Graduate 

Management Admission Test (GMAT) administration. The c (pseudo-guessing) 

parameters for all items were held at a constant value of 0.20. Sixteen additional items 

were added to the original 59 items, to create a total of 75 items. Four a parameters (.25, 

.60, .90, 1.25) were crossed with five b parameter values (-.2.5, -1.0, 0, 1.0, 2.5). Four 

levels of difference in the b parameter value (DIF) between groups (.25, .50, 1.00, and 

1.50) were crossed to produce a total of 80 studied items. These items were then 

combined 16 at a time with the 59 non-studied items to produce five 75-item tests.  

Clauser et al.’s (1991) results indicated that the amount of the DIF, the absolute 

value of the item discrimination parameter, a, and the value of the item difficulty 

parameter, b, influenced the likelihood that an item would be identified as having DIF. 

Specifically, the probability that the item would be flagged for DIF increased 

dramatically as the DIF magnitude increased. A similar but less dramatic effect for 

increases in the discrimination parameter was also noted, though, the absolute value of 
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the difficulty parameter was found to strongly influence the results, but only for the 

extreme upper range of the difficulty scale (i.e., b values close to +2.50). Under the 

unequal ability distributions condition, the MH detected fewer items with DIF. Under the  

equal ability distributions condition, five items of moderate difficulty that went 

undetected for DIF in the unequal ability distributions condition, were identified as 

exhibiting DIF. In general, the main effects of the a and b parameters were found to be 

partially dependent on the DIF magnitude. That is, when there was no DIF, no difference 

in difficulty or discrimination was found to impact the MH value. The Clauser et al. 

findings showed that the MH was most effective with examinees from groups with equal 

ability distributions, but the results of their investigation also demonstrated that the MH 

remained useful with groups of considerably different ability.  

Another simulation study on dichotomous items that involved manipulation of 

item discrimination and difficulty parameters was conducted by Donoghue and Allen 

(1993). This investigation examined the impact that various types of pooling (e.g., thin 

versus thick matching) had on the MH’s ability to detect DIF. Simulated item responses 

were generated by a 3PL IRT model. DIF in the studied item, the studied item difficulty, 

and its discrimination were crossed within tests to produce 42 studied items that were 

added to the core items in each test condition to form a test. Three levels (0.3, 1.0, and 

1.5) of the discrimination parameter and 7 levels (-1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5) of the 

difficulty parameter, bR, for the reference group were generated. The discrimination 

parameters were equal for the reference and focal groups at each level of the difficulty 

parameter. The focal group IRT difficulty parameter, bF, for the studied item differed 
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with each value of the reference group difficulty parameter by 0.3 (i.e., no DIF when bF = 

bR , and DIF favoring the reference group when bF  =  bR + 0.3) .  

Both difficulty and discrimination of the studied item were found to have a strong 

effect on the ability of the MH to detect DIF under thin or thick matching conditions. For 

very easy items, the mean value for the MH statistic was negative, indicating that the 

item was more difficult for the focal group, while for hard items the mean value was 

slightly positive, indicating that the item was somewhat easier for the reference group. 

Additionally, the findings from this investigation indicated that when the studied item 

difficulty was increased, the means for non-DIF and DIF items were decreased. Further, 

the study results indicated that for easy items, increasing the discrimination in the studied 

item made the between group difficulty differences larger; thus resulting in better DIF 

detection.  

Another study on dichotomous items in which the item discrimination and 

difficulty parameters were manipulated was conducted by Rogers and Swaminathan 

(1993). In this investigation, the relative efficacy of the LR and MH procedures under 

varying conditions was examined. The first part of their study examined the distributions 

of the test statistics of the OLR and MH procedures. Four conditions were simulated to 

study the effect that sample size and degree of model-data fit would have on the MH and 

LR’s power to detect DIF. Two levels of model-data fit (“good” fit and “poor” fit) were 

crossed with two levels of sample size (250 per group and 500 per group). Test data for 

which the LR model provided “good” fit were generated using the 2PL IRT model 

whereas a 3PL IRT model was used to generate “poor” fit data. Because the LR method 

specifies a lower asymptote of 0, when generating the “poor” fit model all c (i.e., pseudo-
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guessing parameter) values were set at 0.2. Item parameters were chosen for a 40-item 

test and were selected to produce an approximately standard normal distribution of test 

scores. For each combination of sample size and data model fit, 100 replications of the 

data were performed. Because item characteristics can affect the estimation of parameters 

and hence the distribution of the test statistic for the LR model, five of the 40 items were 

chosen to vary in level of difficulty and discrimination. The results of the first part of this 

study revealed that for very easy items, the c parameter had an effect only on the very 

lowest part of the trait scale; subsequently the LR model provided an acceptable fit for 

the data over nearly all of the range. The study findings also showed that for very 

difficult items, the c parameter affected a much larger part of the trait scale, hence misfit 

of the LR model was more pronounced. The researchers concluded that this particular 

problem may not be serious for most achievement tests in which there are few very 

difficult but highly discriminating items. 

The second part of the study by Rogers and Swaminathan (1993) investigated the 

power of the LR and MH procedures to detect uniform and nonuniform DIF. The item 

discrimination and difficulty parameters were manipulated to 1) simulate uniform and 

nonuniform DIF, and 2) determine if this variation would affect parameter estimation, 

hence DIF detection under the LR procedure. In simulating uniform DIF, the 

discrimination parameters for the reference and focal groups were kept the same but the 

item was manipulated to be more difficult for the focal group. Thirty-two conditions were 

simulated and were obtained by crossing two levels of model-data fit (good or poor fit, 

simulated as in Study 1 using the 2PL model and the 3PL model), two levels of sample 

size (250 per group and 500 per group), two levels of test length (40 items and 80 items), 
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two levels of the shape of the test score distribution (normal and negatively skewed), and 

two levels of percent of items with DIF (15% including the studied item, and 0% other 

than in the studied item).  Both uniform and nonuniform DIF were simulated within each 

condition. Four sizes of DIF, corresponding to the area values of .2, .4, .6, or .8 were 

examined in the uniform and nonuniform conditions. In this investigation, the size of DIF 

in an item was quantified by the area between the generating ICCs. Area was calculated 

by using a formula provided by Raju (1988). In simulating uniform DIF, the a parameters 

for the reference and focal groups were kept the same but the b parameters for the two 

groups were different. Sixteen items in the uniform DIF condition were obtained by 

crossing the level of the a (low or high) and b parameters (both low, both moderate) for 

the two groups and the size of the DIF area. Four types of items were studied: (1) low b, 

high a; (2) moderate b, low a; (3) moderate b, high a; and (4) high b, high a.  

In simulating nonuniform DIF, the researchers kept the b parameters for the 

reference and focal groups the same, but varied the a parameters for the two groups. 

Fifteen items showing nonuniform DIF were created by varying the level of the b 

parameter (low, moderate, high), the level of the a parameters for the two groups (both 

low and high), and the size of the DIF area (.2, .4, .6,.8). Four types of items were 

studied: (1) low b, low a; (2) moderate b, low a; (3) moderate b, high a; and (4) high b, 

low a. In all, 35 items with DIF were constructed. To generate tests with 15% DIF, five 

items needed for a test length of 40 items or 11 items needed for a test length of 80 were 

selected from the set of DIF items. These items were kept constant in all of the analyses 

and were included in the test for the sole purpose of providing the desired degree of test 

score contamination. DIF statistics were not calculated for these items. Each of the 35 
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DIF items to be studied was added separately to the test, its DIF statistics calculated; the 

item was then removed from the test and replaced by another of the items showing DIF. 

This procedure was used so that DIF could be studied in each item under the same 

conditions. Similarly, for the condition showing no DIF in all of the non-studied items, 

each DIF was separately added to the test. Each condition was replicated 20 times, and 

the percentage of items exhibiting uniform and nonuniform DIF that were detected by the 

MH and the LR were compared. Item parameter values taken from real data sets were 

used to generate unbiased items that produced either a normal or skewed test score 

distribution with normally distributed trait levels for both groups.   

For the uniform DIF conditions, the study results demonstrated that the LR and 

MH procedures were almost equally effective in detecting uniform DIF. The study results 

also showed that the items with DIF that were more easily detected by both the LR and 

MH procedures were items of moderate difficulty and high discrimination. For these 

types of items, the detection rates were as much as 15% greater than for the other item 

types. For the nonuniform DIF condition, the lowest detection rate for the LR procedure 

occurred with items of moderate difficulty and low discrimination, and the highest 

detection rate occurred for items of moderate difficulty and high discrimination. The 

power of the MH procedure to detect strictly nonuniform DIF was extremely low for 

items of moderate difficulty. For items of low difficulty, the MH detection rate was still 

approximately 15% lower than the LR detection rate; but for items of high difficulty, the 

detection rates were almost identical.  

Finally, another more recent study on the MH and LR procedures to detect DIF on 

dichotomous items when the magnitude of the item discrimination and difficulty 
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parameters vary was conducted by Hidalgo and Lopez-Pina (2004). In this investigation, 

a data set containing a reference group and a focal group each with a sample size of 1000 

and a normal ability distribution with a mean of 0 and standard deviation of 1 was 

simulated. Twenty-five tests each containing 59 non-DIF items and 16 items with DIF 

were simulated. The item responses for these 75 items were simulated by a 3PL model. 

The c parameters were set at 0.20 and the a and b parameters for the 59 non-DIF items 

were taken from a previous study by Narayanan and Swaminathan (1996). Four hundred 

studied items (i.e., 25 tests with 16 DIF items in each test) were generated and randomly 

assigned to 1 of the 25 tests. For these four hundred items, five levels of difficulty (-1.5, -

1.0, 0, 1.0, or 1.5) and four levels of discrimination (0.25, 0.60, 0.90, or 1.25) were 

chosen. The following conditions were manipulated for the 16 items under investigation: 

(a) four levels of uniform DIF magnitude (0, 0.30, 0.60, and 1.00) and (b) five levels of 

nonuniform DIF magnitude (0, 0.25, 0.50, 0.75, and 1.00). In each of these conditions, 

the differences were generated to favor the reference group over the focal group.  

The results of the investigation by Hidalgo and Lopez-Pina (2004) revealed that, 

in general, the number of correctly identified DIF items was greater when the LR was 

used but that a modified MH procedure that was employed showed similar power as the 

LR. (The modified MH procedure involved splitting the sample into two groups on the 

ability scale, a high ability level and a low ability level and then implementing the MH 

procedure separately for the two groups. This was done for the purpose of improving 

nonuniform DIF detection). The study findings also showed that as the magnitude of 

uniform and nonuniform DIF increased, so too did the detection rates of the various 

methods. Additionally, the investigation also revealed that for the nonuniform DIF 
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conditions, to some extent, depending upon item difficulty, the more discriminating items 

were slightly less likely to be flagged for DIF. This finding was attributed to the fact that 

as the a parameter increased, the area between the ICCs associated with a given between 

group difference in a parameters decreased.  When the difference manipulated in the a 

parameter was 1, generating an item with symmetrical nonuniform DIF, (i.e., differences 

in only the discrimination parameters), the researchers found that the area between the 

ICCs of the reference group, calculated using Raju’s (1988) formula, decreased as the a 

parameter increased. For example, when adiff  = 1 and bdiff  = 0, Raju’s area measures were 

2.606, 0.848, 0.476, and 0.290 when the discrimination parameters for the reference 

group aR were 0.25, 0.6, 0.9, and 1.25, respectively. This pattern was also found when the 

differences between the reference and focal group discrimination parameters were 

smaller. When the asymmetrical nonuniform DIF magnitude was small (bdiff = 0.3), a 

similar pattern to the one found in the symmetrical nonuniform DIF condition was found. 

In those situations in which the differences in the difficulty parameter was small, the 

more discriminating items had areas between the ICCs that were smaller than the less 

discriminating items. 

The results of this investigation indicated that when DIF was symmetrical 

nonuniform the LR procedure had the highest correct DIF detection rates, with 68.75% of 

DIF items correctly identified compared to 61.25% for the modified MH procedure and 

50% for the standard MH procedure. Under the asymmetrical nonuniform DIF condition, 

the OLR and modified MH procedure showed very similar results (87.9% overall for 

each procedure) except under conditions with large DIF magnitudes (i.e., 1.0 and 0.75). 

In those situations, the modified MH procedure was found to be more powerful than the 
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other two procedures. However, when the DIF magnitude was smaller, LR was more 

powerful than the standard MH and modified MH procedures. In contrast, for identifying 

symmetrical nonuniform DIF the LR procedure performed better than the standard MH 

and modified MH procedures, correctly identifying 68.75% of the DIF items, compared 

to 61.25% for the modified MH procedure and 50% for the standard MH technique. For 

uniform DIF conditions, the standard MH procedure performed slightly better than the 

LR and modified procedures, correctly identifying 55% of the DIF items compared to 

53.33% for the LR and 50% for the modified MH procedure.    

The results of this investigation found that, overall, because of the small 

differences in power among the modified MH, and LR procedures, all three methods 

appeared to be highly comparable.  

Polytomous items: DIF detection when item discrimination and difficulty 

parameters vary. The few studies on the MH and LR procedures, specifically when the 

item discrimination and difficulty parameters vary, represent a very small percentage of 

the numerous studies on the efficacy of these two methods to detect DIF in dichotomous 

items. For polytomous items, the percentage of studies on DIF detection methods is much 

smaller than that for dichotomous items and of those few studies on polytomous items, 

very few have examined the efficiency of the Mantel, GMH, and ordinal logistic 

regression procedures under various study conditions, particularly under conditions 

manipulating the item discrimination and category intersection parameters (sometimes 

referred to as difficulty parameters).  

Zwick, Donoghue, and Grima (1993) conducted one of the earliest simulation 

studies involving polytomous data generated by the PCM. Their investigation examined 
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the efficiency of the Mantel and the GMH in detecting DIF in performance tasks. In each 

simulated condition, the total number of test items was 25. Twenty-four of these items 

were DIF-free and were used only to compute the matching score; the 25th item was the 

studied item. The first 20 items were dichotomous and the last 5 were four-category 

items. The studied item always had four categories. The factors that were manipulated 

across the simulated conditions were focal group ability distributions (2 levels) and 

characteristics of the studied item (27 levels). The item characteristics that were of 

primary interest included the difficulty parameters, DIF patterns, and DIF magnitude. The 

studied item characteristics included three sets of reference group parameters, four 

patterns of DIF (constant, balanced, low-shift, and high-shift), and two non-zero DIF 

magnitudes (.1 and .25), resulting in 24 types of DIF items. In addition, a null condition 

in which the studied item had the same parameters for the reference and focal groups 

(e.g., no DIF) was included for each of the three sets of reference group parameters, 

resulting in a total of 27 studied items crossed with two ability levels for a total of 54 

conditions. 

DIF was modeled by starting with a set of reference group parameters and then 

increasing the item difficulties by a value of .1 or .25. Four patterns of DIF were 

considered. 1) Constant DIF. In this condition, all of the transitions from a given item 

score category to the next highest category were assumed to be more difficult for the 

focal group, and the degree to which they were more difficult remained constant. 2) 

Balanced DIF. In this condition, the transition from the lowest to the second category was 

more difficult for the focal group, while the transition from the third category to the 

highest was easier for the focal group. The remaining transition was the same for the two 
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groups. 3) Low-shift DIF. In this condition, the transition from the lowest to the second 

category was more difficult for the focal group. The remaining transitions were the same 

for both groups. 4) High-shift DIF. In this condition, the transition from the third to the 

highest category was more difficult for the focal group. The remaining transitions were 

the same for both groups.  

Four ways of computing the matching variable were crossed with these 54 

simulation conditions. The four ways of computing the matching variable were 

determined by whether or not scores on polytomous items were rescaled in computing the 

matching score (2 levels) and whether or not the studied item was included in the 

matching score (2 levels). In regards to computing the matching variable, different 

weights were assigned to the dichotomous and polytomous items. In one condition no 

rescaling was performed, so that the score range for the dichotomous items was 0-1, and 

for polytomous items the range was 0-3. In the other condition, the rescaling of the 

matching variable was performed by dividing the score on the polytomous items by 3 

resulting in a score range of 0-1 for both types of items so that now both item formats had 

the same weight. Another condition that was varied in the computation of the matching 

variable involved whether or not the studied item was included in the matching score. 

One hundred replications were performed for each of the 216 (54 x 4) conditions. 

In each condition, samples of 500 observations were selected from the reference and 

focal group distributions, yielding a total sample size of 1000. The reference group 

distribution was normal (i.e., N(0,1) in all conditions; the focal group distribution was 

either N(0, 1) or N(-1,1). 



32 

 

Zwick et al.’s (1993) study findings demonstrated that when the reference and 

focal groups’ means are the same, less than ideal procedures (e.g. excluding the studied 

item from the matching variable) for calculating the matching variable do not have an 

adverse effect on the Mantel or GMH’s ability to detect DIF; however, when the means 

differ, the method of computation can lead to an increase in Type I error. Additionally, 

this study showed that scores on polytomous items should not be rescaled when 

calculating the matching variable.  

Although in this investigation, power to detect DIF for the Mantel and GMH 

procedures was much lower than the widely accepted rate of 80%, the findings merit 

discussion. Study results regarding DIF patterns revealed that for the constant DIF 

condition, the Mantel procedure was more powerful than the GMH but that for the 

balanced DIF condition, the GMH was far superior. In fact, in the balanced DIF condition 

when the DIF magnitude was 0.25, the rejection rate for the GMH was 25% but only 4% 

for the Mantel procedure. For the shift-low and shift-high conditions both procedures 

produced similar rejection rates. For all DIF patterns except the constant pattern, when 

the DIF magnitude was 0.1, detection rates were extremely low (8% or less). For the 

constant DIF pattern with a DIF magnitude of 0.1, the rejection rates were approximately 

18% and 11%, respectively for the Mantel and GMH methods. The rejection rates for the 

balanced, shift-low and shift high DIF patterns at the same magnitude of 0.1, ranged from 

4.5% to 17%. For a DIF magnitude of 0.25, the rejection rates for the Mantel were 13% 

for the shift-low condition, 14% for the shift-high, 4% for the balanced condition, and 

76% for the constant condition. For the GMH under the same 0.25 DIF magnitude, 
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rejection rates were 13% for the shift-low condition, 17% for the shift-high condition, 

25% for the constant condition, and 60% for the constant condition.  

Because the GMH compares the odds that focal group members will be assigned a 

particular score category to the odds for the reference group, conditional on a matching 

variable, Zwick et al. (1993) concluded that for data in which the entire response 

distribution and not just the means is of interest, the GMH might be the best method to 

use. For most DIF analyses of polytomous items, the researchers concluded that the 

Mantel (1963) approach which involves comparing the means for two groups, conditional 

on a matching variable and which takes the ordering of score categories into account, 

would be more useful. 

Another simulation study on polytomous data was conducted by French and 

Miller (1996). This study evaluated the power of the LR procedure to detect DIF in 

polytomous items. Several versions of a test containing 25 items were generated. Each 

item had four score categories, with a total possible score on the item ranging from zero 

to three. For each of the tests, a single item (i.e., the studied item) was simulated to 

contain DIF. Item scores were generated using Muraki’s (1992) GPCM. Two sample 

sizes, 500 and 2,000 were used for each group to represent small and large sample sizes. 

Ability estimates were generated from a standard normal distribution N(0,1). Because LR 

procedures require a dichotomous dependent variable, polytomous data must be recoded 

into a number of dichotomous sets, each of which is then ready for a separate regression 

analysis. Three approaches that are extensions of logistic modeling for polytomous data 

were used in this study. These methods involved using a different coding scheme and are 

called the continuation ratio logits, cumulative logits, and adjacent categories models. 
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These models use the logit or the ratio of the probability of getting the category correct to 

the probability of getting the category incorrect (Swaminathan & Rogers, 1990). The 

three methods were compared for their power in identifying various forms of DIF in 

dichotomized polytomous data. Each coding scheme produced one less regression than 

the number of score categories. 

The continuation ratio logit coding scheme combines the chi-squared results from 

separate regressions and adds them to give an overall result, or omnibus test. One 

disadvantage of this coding scheme is that increasingly smaller amounts of data are 

isolated across regressions to examine for the presence of DIF. The continuation ratio 

logits coding scheme involved comparing the zero score category to all other categories 

combined in the first regression. In the second regression, simulees that received a score 

of one were compared to those that received scores of two or three. Finally, in the third 

regression, simulees that received a score of two were compared to those that received a 

score of three.  

The cumulative logits model involves no loss of data in the coding scheme. It 

simultaneously estimates multiple equations. The number of regression equations it 

estimates will always be one less than the number of categories in the dependent variable. 

For example, suppose the dependent variable Y for an item has four score categories, 

three equations will be estimated. Equation one, will model the odds of responding in 

score category 1 compared to score categories 2, 3, and 4; equation two will model the 

odds of responding in score categories 1 and 2 compared to score categories 3 and 4; and 

equation 3 will model the odds of responding in score categories 1, 2, and 3 compared to 

category 4. For ordinal response data, cumulative logists can be modeled with the 
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proportional odds model as in the example above. Proportional odds imply that the odds 

of responding in any of the score categories are the same for both the reference and focal 

groups. For example, if the regression coefficient for the focal group is significant, that 

would imply that DIF is present, and that the odds of scoring in a particular category are 

different for that group. 

In the adjacent categories logit model, DIF can be isolated between adjacent 

categories because each response probability is compared to its neighboring response 

probability - not to all other score categories as in the cumulative logits model. In the 

adjacent categories logit model, simulees that received a score of zero were compared to 

those that received a score of one in the first regression; those simulees that received a 

score of one were compared to those who received a score of two in the second 

regression; and those that received a score of two were compared to those that received a 

score of three in the third regression. 

In addition to the two sample size conditions, four other conditions were 

examined (termed Conditions 1 to 4). In the first three conditions, nonuniform DIF was 

generated (e.g., differences in the a parameter between the reference and focal group), 

and in the fourth condition, only uniform DIF was generated. These four conditions were 

applied to only the studied item in each simulation. The remaining 24 items had identical 

item parameters for both groups. For the 25th item, the differences in the a parameters 

between the focal and reference groups were 0.5, 1.0, and 1.5 for Conditions 1, 2, and 3, 

respectively. In the fourth condition, only b parameters associated with category 

intersections one and three were varied, such that for examinees of equal abilities 

receiving a score of one was more difficult for the focal group than the reference group, 
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and receiving a score category of two was more difficult for examinees in the reference 

group than in the focal group.  It was hypothesized that changes in sample size and item 

parameters would be expected to affect the power of the LR procedure to detect DIF. 

Specifically, in regards to changes in item parameters, it was expected that as the 

differences in the discrimination parameters a, between the focal and reference groups 

from the first to third DIF condition increased, so too would the spread between the ICCs. 

Therefore, it was hypothesized that DIF in the 25th item would be detected more in the 

second condition than in the first, and more often in the third condition than in the 

second.  

In the fourth condition, the difficulty parameter b, associated with category 

intersections of one and two were varied, such that receiving a score of one was easier for 

examinees of equal abilities in the reference group than in the focal group, and receiving 

a score of two was easier for examinees of equal abilities in the focal group than in the 

reference group. For the focal group, for each of the three category intersections, the bs 

were as follows: 1 for the first category intersection; -1 for the second category 

intersection; and 2 for of the third category intersection. For the reference group the bs 

for the first, second, and third category intersections were -2, 1, and 2, respectively.  

The differences in the a parameters between the focal and reference groups were 

0.5, 1.0, and 1.5 for Conditions 1, 2, and 3, respectively. It was hypothesized that the 

difference in the discrimination parameters between the two groups from the first to the 

third DIF conditions would result in more spread between the ICCs which would, in turn, 

lead to DIF being detected more often as the differences increased. In the fourth 

condition, only b parameters associated with score categories one and three were varied, 
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such that for examinees of equal abilities receiving a score of one was more difficult for 

the focal group than the reference group, and receiving a score category of two was more 

difficult for examinees in the reference group than in the focal group. For the focal group, 

for each of the three category intersections, the bs were as follows: 1 for the first category 

intersection; -1 for the second category intersection; and 2 for of the third category 

intersection. For the reference group the bs for the first, second, and third category 

intersections were -2, 1, and 2, respectively. Ability estimates were generated from a 

standard normal distribution N(0,1). Two sample sizes, 500 and 2,000 were used for each 

group to represent small and large sample sizes. Power was calculated as the proportion 

of times DIF was correctly identified in the 25th item across the 100 replications of the 

study. The results of this investigation indicated that, in general, larger sample sizes led 

to greater power for LR in detecting DIF in polytomous items. For Conditions 1 to 3, 

larger samples resulted in greater power for detecting DIF. Also, nonuniform and uniform 

DIF were detected more frequently for each coding scheme as the a parameter increased 

for the focal group. Additionally, as the differences in the item parameters between the 

focal and reference groups increased, as in going from Condition 1 to 3, the more 

frequently nonuniform and uniform DIF were detected. For the continuation ratio and 

cumulative logits coding schemes, when the sample size was large (i.e., 2,000), power to 

detect nonuniform DIF for each condition was adequate and in some cases strong under 

all regressions. For example, under Condition 1, the power rates for the first, second, and 

third regressions were 93%, 96%, and 47% respectively.  

The three coding schemes’ powers to detect uniform DIF were as effective in 

Condition 4 as they were in the first three conditions that had nonuniform DIF. DIF was 
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still detected using LR techniques with the smaller sample size (500) but the power was 

much weaker. When sample sizes were reduced to 500, power decreased for the first 

regression under the continuation ratio and cumulative logits coding schemes, and overall 

for the adjacent categories coding scheme. The adjacent categories coding scheme lost 

large amounts of data in all three regressions, consequently as expected, was not as 

powerful in detecting DIF as the other two procedures. Overall, the results showed that 

with the large sample size (2,000), LR is a good choice for detecting DIF in polytomous 

items. 

Wang and Su (2004b) investigated the performance of the Mantel and GMH on 

detecting DIF when tests contain polytomous items exclusively, a variety of percentages 

of DIF items, and various DIF patterns. Even though several studies on dichotomous 

items have shown that the MH performs poorly (i.e., begins to lose control over Type I 

error) when the percentage of DIF items in a test is increased to 10% or 15% (Fidalgo, 

Mellenbergh, & Muniz, 2000; Miller & Oshima, 1992; Narayanan & Swaminathan, 1994, 

1996), no studies had examined whether or not those DIF item percent increases would 

adversely affect the performance of the Mantel and the GMH procedures for polytomous 

items. Recently, however, some studies have demonstrated that it is the ASA (average 

signed area- an area measure that depicts the average degree to which a test favors the 

reference group; the test as a whole advantages the reference group when ASA is 

positive, the focal group when it is negative, and neither group when ASA is zero) that is 

more critical than the percentage of DIF items to the type I error of the Mantel and GMH 

procedures (Wang & Su, 2004a; Wang & Yeh, 2003). Therefore, in addition to 

examining whether or not the percentage of polytomous DIF items would adversely 
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affect the power of the Mantel and GMH procedures to detect DIF, Wang and Su’s study 

examined whether the ASA had the same effects on the Mantel and GMH for polytomous 

items as it did on the MH for dichotomous items The further ASA is from zero, the worse 

the MH and IRT-based DIF detection methods should perform. The ASA magnitudes in 

the Wang and Su investigation ranged from 0 to 0.125. 

Wang and Su (2004b) manipulated the following eight independent variables in 

their study: DIF detection methods (two levels), test purification procedure (three levels), 

item response model (two levels: the PCM, and the GRM), mean ability difference 

between groups (four levels), test length (three levels), DIF pattern (three levels), 

magnitude of DIF (two levels), and DIF percentage (six levels). Hence, a total of 5,184 

conditions were simulated. The generating item parameter estimates of the reference 

group were adopted from 10 five-point items of 4th, 8th, and 10th-grade students’ 

responses to the mathematics tests of the Wisconsin Student Assessment System (Kim & 

Cohen, 1998). The sample sizes of the reference and focal groups were each 500. 

Members of the reference group were generated from a normal distribution with a mean 

of zero and a standard deviation of 1 (i.e, N (0, 1)). Members of the focal group were 

generated from N(0,1), N(-0.5,1), N(-1,1), or N(-1.5,0). Even though several previous 

studies (e.g., Donoghue et al., 1993; Mullis, Dossey, Owen, & Phillips, 1993) reported 

that a difference in latent trait means of one standard deviation is typical and realistic 

between certain reference and focal groups, a difference in latent trait means of one and a 

half standard deviations was used to explore the boundary of the two methods. Test 

lengths of 10, 20, and 30 items, representing short, medium, and long tests, respectively 
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were simulated. Item parameters were for the 10-item tests but were repeated two and 

three times for the test lengths of 20 and 30 items, respectively. 

Three DIF patterns were manipulated: constant, balanced, and constant-

item/balanced test. In the constant pattern, the amount of DIF within a polytomous item is 

held constant across score categories and is unidirectional. In this scenario DIF is usually 

simulated to favor one group all the time, typically the reference group. For example, all 

the location parameters within a DIF item of the focal group would be larger than those 

of the reference group by a constant amount. In the balanced pattern, the magnitude of 

DIF is balanced across all score categories. For example, in Wang and Su’s (2004b) 

investigation, the balanced pattern was manipulated by allowing the first two location 

parameters of the focal group to be larger than those of the reference group by an amount 

s, and allowing the last two location parameters to be smaller than those of the reference 

group by s. The constant-item/balanced test pattern exists when all of the DIF patterns are 

constant within items but balanced within tests. This can sometimes result in a canceling 

out effect (Wang & Su, 2004a). For example, half of the DIF items could have a positive 

DIF magnitude, and the other half an equal amount of negative DIF, so that the DIF 

contamination within tests is cancelled out between groups.  

Study findings indicated that under the balanced pattern, both procedures yielded 

good control over the average Type I error, even when the percentage of DIF items was 

as high as 40%. Under the constant pattern, however, the Mantel and GMH began to lose 

control over their average Type I error once the percentage of DIF items reached 

approximately 30% when the average signed area (ASA) equaled 0.03 and 20% when 

ASA was 0.05. In the Wang and Su (2004b) investigation, empirical statistical power was 
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assessed by the proportion of times out of 1,000 replications that an item was correctly 

identified as possessing DIF. An alpha level of 0.05 was used. Study findings 

demonstrated that in general, the average power of the Mantel was higher than the GMH 

under all but the balanced patterns. Study findings also revealed that the Mantel and 

GMH yielded much higher power under the constant and constant-item/balanced-test 

pattern than the balanced pattern. Also, varying test length when the PCM was the 

generating model had no effect on the Mantel and GMH’s Type I error and power. 

However, when the GRM was the generating model, the Mantel and GMH yielded 

slightly better control over Type I error in the 20 item tests than in the 10 item tests.  

Recently, Su and Wang (2005) investigated the power of the Mantel, GMH, and 

Logistic Discriminant Function Analysis (LDFA) methods to detect DIF in polytomous 

items. The LDFA is also model based like the LR procedure but uses group membership 

as the dependent variable rather than item score. Thus, in LDFA, the probability of group 

membership is estimated from total score and item score. In the Su and Wang (2005) 

study, responses to dichotomous items were generated under the Rasch (1960) model or 

the 3PL model and the PCM or the GRM was used to generate polytomous item 

responses. The simulated test consisted of 20 dichotomous items and five 4-point items. 

The following eight independent variables were manipulated: DIF detection methods (3 

levels), test purification procedure (3 levels), item response model (3 levels: Rasch + 

PCM, 3PL model + PCM, and 3PL model + GRM), mean ability difference between 

groups (4 levels), test length (2 levels), DIF pattern (5 levels), magnitude of DIF (3 

levels), and DIF percentage (6 levels). Hence, a total of 11,178 conditions were 

simulated. The sample sizes of the reference and focal groups were each 500. The 
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members of the reference group were generated from N(0,1). The members of the focal 

group were generated from N(0,1), N(-0.5,1), N(-1,1), or N(-1.5,1). The tests contained 

either 25 or 50 items. Five DIF patterns were manipulated: constant, balanced, shift-low, 

shift-high, and constant-item/balanced test. There were five polytomous items in the 25-

item tests. The number of DIF items in those tests was set at 0, 1, 2, 3, 4, or 5. Hence, the 

percentage of DIF items in the tests were 0%, 4%, 8%, 12%, 16%, or 20%, respectively. 

All the dichotomous items were DIF free. Because there were only five polytomous items 

in the 25 item test, a 20% DIF rate meant that all five polytomous items exhibited DIF. 

The studied item was always included in the matching score, as suggested by Zwick et al. 

(1993). One hundred replications were conducted for each condition.  

The results of this investigation showed that under the constant pattern, all three 

methods began to lose control over their average Type I error rate once the percentage of 

DIF items exceeded 12%. The study results also indicated that under the constant pattern, 

the average power of the Mantel and LDFA methods was similar but higher than that of 

the GMH. Under the balanced pattern, all three methods had good control over the 

average Type I error even when the percentage of DIF items was as high as 20%. 

Additionally, under the balanced pattern, the Mantel and LDFA outperformed the GMH 

in their power to detect DIF. Under the shift-high and shift-low patterns, the average 

power of the three methods to detect DIF was roughly the same. Under the constant-

item/balanced test pattern, the average power of the Mantel and LDFA methods was 

similar but higher than that of the GMH and finally, the study findings indicated that the 

higher the percentage of DIF items, the more inflated the average Type I error became. 
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Another recent study (Kristjansson et al., 2005) compared the efficiency of the 

Mantel, GMH, LDFA, and the unconstrained cumulative logits ordinal logistic regression 

(UCLOLR) to detect DIF using a simulated 26-item test. In this investigation, all items 

were ordinal with four score levels and the 26th item was the designated studied item. The 

difficulty and discrimination parameters for the 25 nonstudied items were held constant. 

Item responses were generated using the GPCM. Thus, both slope and location were 

estimated. Type I error and power were examined. Kristjansson et al. (2005) manipulated 

the following four variables in their investigation: 1) presence and type of DIF, 2) studied 

item discrimination, 3) groups’ sample size ratio, and 4) skewness in ability distribution. 

In total, 96 study conditions were tested (12 studied item levels x 2 sample size ratios x 2 

skewness levels x 2 ability differences). Four hundred replications were performed for 

each study condition.  

Three DIF conditions--null DIF, uniform DIF, and nonuniform DIF--were 

simulated in the studied item. In the null DIF condition, the a and b parameters were the 

same for the reference and focal groups. In the uniform DIF condition, a parameters for 

both groups remained the same, but b parameters for the focal group were increased by 

0.25 at each transition between score levels. This last condition made it more difficult at 

each transition for the focal group to achieve a higher score. In the nonuniform DIF 

condition, b parameters were equivalent between the two groups, but the a parameter for 

the reference group was higher than that for the focal group. The actual size of the 

difference varied depending on the studied item discrimination. That is, when the studied 

item discrimination was 0.8, the a parameter was 1.8 for the reference group, when the 

studied item discrimination was 1.2, the a parameter was 2.5 for the reference group and 
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3.2 for the reference group when the studied item discrimination was 1.6. The values 

were selected so that the DIF magnitude in the uniform and nonuniform conditions would 

be approximately equal. 

To examine the effect that varying item discriminations would have on DIF 

detection, three different studied item discriminations (low, a = 0.8; moderate, a = 1.2; 

and high, a = 1.6) were assessed. Two levels of group ability differences were also 

evaluated: (a) equal reference and focal group ability distributions (i.e., both groups had a 

mean of 0 and a standard deviation of 1) and (b) unequal distributions (i.e., mean ability 

for the focal group was -0.5 and 0 for the reference group; a standard deviation of 1 for 

both groups).  

When assessing the effect of group sample size ratio on DIF detection, 

Kristjansson et al. (2005) held the total sample size constant at 4,000 and used two levels 

(the equal and unequal conditions) of group sample size ratio. In the equal condition, the 

reference and focal groups had sample sizes of 2,000 and in the unequal condition, the 

sample size of the reference group was four times larger (3,200) than that of the focal 

group (800).  

Two levels of skewness were compared to determine the effect of skeweness on 

the ability of the Mantel, GMH, LDFA, and UCLOLR to detect DIF. A moderate 

negative skew (-0.75) in ability distributions for both the focal and reference groups and 

no skewness were compared.  

The results showed that none of the four DIF detection procedures showed any 

significant departure from the nominal Type I error rate of 0.05. However, for both the 

Mantel and the LDFA, a slightly increased Type I error rate was related to the interaction 
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between high item discrimination and group ability differences. Further, all four 

procedures had excellent power (greater than 0.963) for detecting uniform DIF. However, 

the GMH and UCLOLR’s power to detect uniform DIF was directly related to item 

discrimination and sample size. Both had higher power for uniform DIF when item 

discrimination was moderate or high than when item discrimination was low. 

Additionally, their power to detect uniform DIF was slightly lower when the sample size 

ratio was 4:1.  

Several issues are unexplored in the above five studies on the performance of the 

Mantel, GMH, and OLR. First, it is seldom the case that most simulated tests contain 

only polytomous items. This is the case in the above mentioned studies as most of the 

simulated tests consisted of a set of dichotomous items and a set of polytomous items. 

This mixed format was designed to mimic educational assessments that contain a mixture 

of multiple choice and essay items. However, many educational assessments consist 

exclusively of polytomous items (e.g., constructed-response tests). Thus, the findings 

obtained from tests with both dichotomous and polytomous items might not be directly 

applicable to tests that contain polytomous items exclusively. Even though the Wang and 

Su (2004b) investigation examined the performance of the Mantel and GMH for a set of 

polytomous items and the French and Miller (1996) study investigated the performance 

of the LR for a set of polytomous items, no research to date has compared the 

performance of all three methods (i.e., the Mantel, GHM, and OLR) on DIF detection 

when a test contains only polytomous items. It is, therefore, of interest to determine how 

the Mantel, GMH, and OLR procedures perform when a test contains ordered 

polytomous items exclusively.  
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Second, Wang and Su (2004b) manipulated three DIF patterns (constant, 

balanced, and constant-item/balanced–test) in their investigation and Su and Wang 

(2005) manipulated five (constant, balanced, shift-low, shift-high, and constant-

item/balanced-test) but because the item parameters were generated using the PCM and 

the GRM, the item discrimination value was not manipulated. It is, therefore, of interest 

to examine the effectiveness of the Mantel, GMH, and OLR when the item discrimination 

parameters vary under different DIF patterns.  

Third, only a few studies (e.g., Donoghue & Allen, 1993; Hambleton et al., 1993) 

have examined the efficacy of DIF detection methods, namely the MH, when both the 

item discrimination and difficulty parameters are manipulated.  No relevant research in 

the literature on polytomous item formats has examined the effects that varying both the 

item discrimination and category intersection parameters would have on the Mantel, 

GMH, and Ordinal logistic regression procedures to detect DIF.  

Fourth, a few researchers have found that large differences in group ability can 

lead to high Type I error; this effect is further exacerbated when the studied item 

discrimination is high (Kristjansson et al., 2005). What happens to the Type I error rate of 

the Mantel, GMH, and OLR procedures under conditions of high item discrimination in 

the studied item and large group ability differences particularly under different category 

intersection magnitudes needs further investigation. 

Finally, no study to date has examined the effectiveness of the Mantel, GMH, and 

the OLR on detecting DIF in polytomous items under various DIF pattern conditions 

when the GPCM is used as the generating parameter model. Whether the GPCM has the 

same effect as the PCM on the DIF detection rates for polytomous items under certain 
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study conditions is still an unanswered question. This study will attempt to provide some 

insights and answers to the above issues and questions. This investigation compared the 

Type I error and power of the Mantel, GMH, and OLR procedures to detect DIF for tests 

that contain only polytomous items under a variety of conditions. Specifically, when (a) 

the item discrimination parameters vary (b) category intersection parameters vary (c) DIF 

magnitudes vary (d) score categories contain various DIF patterns; (d) there are 

differences in average latent trait between groups.
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CHAPTER 3 

METHODOLOGY 

A Monte Carlo simulation study was conducted to assess the power and Type I 

error performance of three DIF detection methods: the Mantel, GMH, and OLR 

procedures using Muraki’s (1992; 1993) Generalized Partial Credit Model as the 

generating IRT model. Several factors were varied: studied item discrimination, studied 

item difficulty, DIF magnitude, differences in group ability, and DIF patterns. For each 

condition, the DIF detection rates of the Mantel, GMH, and OLR were compared. The 

comparison of these three DIF detection methods was assessed by tallying up the number 

of times each method correctly identified items with DIF as well as the number of times 

each method falsely identified an item as exhibiting DIF. DIF detection rates were 

examined based on statistical significance using an alpha of .05. 

Research Questions 

The following research question guided this study: 

1. When a test contains only polytomous items, to what extent are the Type I 

error rates and power of the Mantel, GMH, and OLR affected by variation 

in the item discrimination parameter, category intersection parameter, DIF 

magnitudes, DIF patterns within score categories, and average latent trait 

differences between the reference and focal groups? 
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The Mantel and GMH Statistics 

The Mantel, a nonparametric observed score method, is a polytomous extension 

of the Mantel-Haenszel (MH) method (Mantel, 1963) that takes into account the ordered 

nature of the response categories when testing for DIF. The Mantel provides a statistic 

with a chi-square distribution of one degree of freedom when the null hypothesis of no 

DIF is true (Meyer, Huynh, & Seaman, 2004; Zwick, Donoghue, & Grima, 1993). 

Calculation is based on item means for groups that have been matched on some measure 

of proficiency. The GMH is a generalized Mantel-Haenszel statistic used for nominal 

response data based on group differences across the entire response distribution. The 

GMH is sensitive to uniform as well as nonuniform DIF because it tests along the entire 

response distribution, whereas the Mantel has been reported as only being able to 

consistently detect uniform DIF because it tests differences in mean item scores 

(Kristjansson et al., 2005). To implement the Mantel or GMH, the data are arranged into 

a 2 x T x K contingency table, where T is the number of response categories in a 

polytomous item, and K is the number of levels of the matching variable. One 2 x T table 

is required at each of the K score levels, as shown in Table 1. 

The values y1, y2, …, yT represent the possible T scores of the item. The values 

nRTk  and nFTk represent the number of  the reference and focal group members, 

respectively who receive an item score of yt at the kth level of the matching variable. The 

“+” symbol represents the summation over a particular index. The test statistic for the 

Mantel is represented by 

 2 = 


 

k
k

k
k

k
k

FVar

FEF

)(

)]([ 2
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Table 1 

The kth Level of a 2 x T Contingency Table 

 
 

Item Score 
 
 

Group  y1  y2   y3  yT  Total 
 

Reference nR1k  nR2k  nR3k …. nRTk  nR+k 

 

Focal  nF1k  nF2k  nF3k …. nFTk  nF+k 

 

Total  n+1k  n+2k  n+3k …. N+Tk  n++k 

 

Note. This table was taken from Wang and Su (2004).  

where Fk  is the sum of the focal group scores at the kth level of the matching variable: 

 Fk =  1y n Ftk  (4) 

where E (Fk) is 

 E (Fk) = 
k
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The null hypothesis for the Mantel test is that there is no association between the 

row mean score of the studied group (i.e., the focal group) and the row mean score of the 

reference group (i.e., the comparison group). A lower row mean score indicates lower 

performance by a particular group. DIF is present in the studied item whenever there is a 
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difference in the row mean scores at that particular score level. Under the null hypothesis, 

the test statistic in Equation 3 has a chi-square distribution with 1 degree of freedom. The 

null hypothesis for the Mantel is that at a given score level, there is no association 

between the item score and group membership. If the null hypothesis is rejected, 

members of the reference and focal groups who have been matched on ability differ in 

their mean performance on the studied item; consequently, the item is flagged as 

exhibiting DIF. 

The GMH treats the response categories as nominal data. The test statistic for the 

GMH has a chi-square distribution with M-1 degrees of freedom: 

 

X2
GMH =  )(  kk AEA ]′     


)()(
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where 
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 E(A′ k ) = n kR n′ k /n k ,      (9) 
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where diag(n k ) is a (T-1) x (T-1) diagonal matrix with elements nk. Whereas A k , E(A k ) 

and V(A k ) are scalars in the dichotomous case, A k , E(A k ) are vectors of length T-1 in 

the polytomous case, corresponding to (any) T-1 of the T response categories, and V(Ak) 

is a (T-1) by (T-1) covariance matrix. Following the notation of Table 1, R represents the 

reference group, and diag (nk) is a (T- 1) x (T – 1) diagonal matrix with elements nk. The 
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statistic in Equation 7 has a chi-square distribution with T-1 degrees of freedom under the 

null hypothesis for the GMH that there is no conditional association between group 

membership and response category. If the null hypothesis is rejected, then conditional 

association is found, thus the item would be found to exhibit DIF. 

Ordinal Logistic Regression 

The equation for the OLR is as follows: 

Y = b0 + b1TOT + b2 GROUP + b3TOT*GROUPi + ei,  (12)  

where ei ,(the error term) is normally distributed with a mean of zero and a variance of 

( 2 /3). Y, the dependent variable, is the item response (0 or 1) after recoding ordinal 

data into K – 1 dichotomous sets (where K is the number of response categories). For 

polytomous items, there will be K-1 logistic regression functions for each response 

category. The independent variables are represented by TOT, the total score; GROUP, 

group membership (reference or focal); and TOT*GROUP, the interaction between group 

and total score. In Equation 13 it is seen that the dependent variable is equal to the natural 

log of a probability of a correct response, p, divided by the probability of an incorrect 

response, (1-p), where Y is the natural log of the odds ratio; yielding the following 

equation: 

 Y = ln 







 )1( p

p
 = b0 + b1TOT + b2 GROUP + b3TOT*GROUPi + ei.       (13) 

DIF detection using the LR procedure provides a test of DIF conditionally on the 

relationship between the dependent variable (item response) and the total scale score 

while simultaneously testing for the presence of both uniform and nonuniform DIF. In 

testing for the presence of DIF, each model term’s (TOT, GROUP, and TOT*GROUP) 
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contribution to the model is evaluated for improvement of model fit. The item exhibits 

uniform DIF when the GROUP effect is statistically significant and TOT*GROUP effect 

is not, whereas the item has non-uniform DIF when the interaction effect of 

TOT*GROUP is statistically significant (Hidalgo & Lopez-Pina, 2004). 

Because the response data in this investigation was ordinal, the cumulative logits 

model was used and the proportional odds model was employed. Multiple equations were 

simultaneously estimated. Three regression equations (one less than the number of score 

categories) were estimated. Equation one, modeled the odds of responding in score 

category 1 compared to score categories 2, 3, and 4; equation two modeled the odds of 

responding in score categories 1 and 2 compared to score categories 3 and 4; and 

equation 3 modeled the odds of responding in score categories 1, 2, and 3 compared to 

category 4. The null hypothesis for the proportional odds model is that the odds of 

responding in any of the score categories are the same. 

Study Design Conditions 

In this study, conditions were simulated in order to investigate power and Type I 

error of three commonly used DIF detection procedures for polytomous items. Power was 

investigated in conditions where DIF was present whereas Type I error was examined for 

false detection of DIF in conditions where the studied item did not include DIF. The 

power and Type I error of the Mantel, GMH, and OLR procedures were examined under 

several factors on the ability to detect DIF in a simulated 20-item test. Both the Type I 

error and power conditions had factors that were held constant and factors that varied. 

The factors that varied included DIF patterns, DIF magnitude, differences in group 

ability, studied item discrimination, and studied item difficulty. The non-varying factors 
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investigated in this study are presented in Table 2 and the varying factors are presented in 

Table 3. 

Factors Held Constant 

Generating model. The GPCM was the polytomous IRT model used to generate 

the data for the reference and focal groups in this study. The GPCM has been used in a 

number of simulation studies on DIF detection (e.g., Chang et al., 1996; French & Miller, 

1996; Kristjansson et al., 2005). The primary reason for this design choice is that under 

the GPCM, item slope parameters may vary (i.e., items can differ with respect to 

discriminating power), whereas under the PCM they are not free to vary (i.e., all items 

have the same discriminating power). Therefore, in order to investigate the power and the 

extent to which the Mantel, GMH, and OLR procedures maintain control of their Type I 

error rate under various item discrimination magnitudes, simulated data sets were 

generated using the GPCM. 

Table 2 

Fixed Factors in the Study 

Factor Category Factor 
Generating Model Muraki’s Generalized Partial Credit Model 

Number of Replications 1,000 

Test Length 20 items 

Number of Item Categories 4 

Percent of Items with DIF 5% 

Ability Distribution Type Normal 

Type of DIF Uniform 

Sample Size 1,000 

 



55 

 

Table 3 

Factors Varied in the Study Design 

Factor Category Factors 
Patterns of DIF 1. Constant 

2. Shift-low 
3. Shift-high 
4. Balanced 

DIF Magnitude 1. 0.10 
2. 0.25 
3. 0.40 

Difference in Group Ability 1. NR(0, 1) and NF (0, 1) 
2. NR(0, 1) and NF(-0.5, 1) 
3. NR(0,1) and NF(-1,1) 

Studied Item Discrimination 1. 0.8 
2. 1.2 
3. 1.6 

Studied Item Difficulty 1. b1 = -2, b2 = 0, b3 = 2 
2. b1 = -1, b2 = 0, b3 = 1 
3. b1 = 0, b2 = 1, b3 = 2 
4. b1 = -2, b2 = -1, b3 = 0 

 

Number of replications. Although previous simulation studies (Kristjansson et al., 

2005; Rogers & Swaminathan, 1993; Su & Wang, 2005; Wang & Su, 2004b) employed 

100 replications, in this investigation, one thousand replications were completed for each 

condition to ensure the accuracy of the empirical estimations of the sampling distribution 

characteristics.   

Test length. There were 20 items generated under the GPCM. This is a common 

test length used in studies investigating DIF. This test length also closely approximates 

that used in studies investigating the effectiveness of various DIF detection methods 

when the GPCM is the data generating model (e.g., Chang et al., 1996; French & Miller, 

1996; Kristjansson et al., 2005).  
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Number of item categories. Each item was generated to have four score categories 

(i.e., one point for each correct step) to simulate four ordered levels of performance that 

an examinee must execute in order to arrive at the correct solution to the problem. 

Percent of items with DIF. Five percent of the 20 items in this simulation study 

contained DIF; therefore, only a single item was assessed for DIF while the other 19 

items were simulated to be DIF-free. The item with DIF was always the 20th item.  

Ability Distribution.  Item parameters were generated using a standard normal 

distribution. This provided an opportunity to examine results in the context of met 

distributional assumptions. 

Type of DIF. Uniform DIF was the only type of DIF that was generated in this 

study. Non-uniform DIF was not investigated. 

Sample Size. The total simulated sample size was 1,000. That is, there were 500 

simulees in the reference group and 500 simulees in the focal group. 

Factors Varied 

DIF patterns. Four DIF patterns referred to by Zwick et al. (1993) as constant, 

shift-low, shift-high, and balanced DIF were manipulated. Under the constant pattern, all 

of the transitions from a given item score category to the next highest category were 

assumed to be more difficult for the focal group by a constant amount, s. The item 

parameters for the reference and focal groups were determined by: 

δmiF = δmiR  + s; m = 1, 2, 3. (15) 

Under the shift-low pattern, the transition from the lowest to the second category was 

more difficult for the focal group. The remaining transitions were identical for both 

groups. That is, 
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δ1iF = δ1iR  + s, δ2iF = δ2iR , δ3iF = δ3iR. (16) 

Under the shift-high pattern, the transition from the third to the highest category was 

more difficult for the focal group. The remaining transitions were identical for both 

groups. That is,  

δ1iF = δ1iR , δ2iF = δ2iR , δ3iF = δ3iR + s. (17) 

Under the balanced pattern, the transition from the lowest to the second category was 

more difficult for the focal group, while the transition from the third to the highest 

category was easier for the focal group. The remaining transition was the same for both 

groups. That is, 

δ1iF = δ1iR  + s, δ2iF = δ2iR, δ3iF = δ3iR - s. (18) 

DIF magnitude. Three non-zero magnitudes (0.10, 0.25, and 0.40) of DIF were 

investigated in this study. These values of DIF represented the amount of DIF that was 

simulated to occur within the focal group. These values ranged from small to moderate 

DIF magnitudes. The magnitude of .25 has been used in several studies (e.g., Chang et al. 

1996, Su & Wang, 2005; Zwick et al., 1993), however, it is important to study how 

smaller and larger magnitudes of DIF may affect DIF detection methods. The generated 

DIF was added to the category intersection parameters for the items selected to have DIF 

according to the pattern of DIF that was simulated.  

Differences in group ability. Several studies have found that differences in ability 

distributions, sometimes referred to as impact, affect DIF detection rates (e.g., French & 

Maller 2007; French & Miller, 1996; Narayanan & Swaminathan, 1996; Wang & Su, 

2004). To simulate mean latent trait differences between groups, members of the 

reference group were generated from N(0, 1). There were three levels to the means of the 
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focal group. Members of the focal group were generated from N(0,1), N(-0.5,1), or N(-

1,1). Let  

μd ≡  μR – μF, (19) 

where μR and μF were the mean latent traits of the reference and focal groups, 

respectively. Consequently, there were three levels of μd: 0, 0.5, and 1. Several studies 

have reported that a difference in mean ability of 1 standard deviation between certain 

reference and focal groups occurs frequently in real testing situations (Ankenmann et al. 

1999; Donoghue et al., 1993; French & Maller, 2007; Su & Wang, 2005). This factor was 

varied only in the Type I error portion of this study. 

Studied item discrimination. Studied item discrimination has been consistently 

related to the efficacy of DIF detection methods. Research has shown that Type I error 

rates increase when there is a large difference in ability between groups and the studied 

item discrimination is high (Chang et al., 1996; Hidalgo & Lopez-Pina, 2004; Zwick et 

al., 1997)).  Also, research has shown that when the studied item discrimination is low, 

power for uniform DIF is also low but very high when the studied item discrimination is 

high (Chang et al., 1996). In the present study, three different studied item 

discriminations were evaluated in the item containing DIF: 0.8,1.2, and 1.6. These 

parameter values represent a reasonable range of item discrimination values that have 

been used in previous studies (e.g., French & Miller, 1996; Kristjansson et al., 2005; 

Rogers & Swaminathan, 1993).   

Studied item category intersection parameter magnitude (difficulty). The level of 

difficulty in the studied item has been shown to influence DIF detection (Clauser et al., 

1991; Donoghue & Allen, 1993; French & Miller, 1996; Hambleton et al., 1993; Rogers 
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and Swaminathan, 1993). In this study a variety of category intersection magnitudes were 

utilized to reflect the impact of item difficulty on DIF detection. French and Miller used 

25 items in their Monte Carlo investigation of the performance of logistic regression for 

DIF detection when item responses were generated by the GPCM. For these 25 items 

there were five different sets of values used for b1, b2, and b3. In order to ensure realistic 

values in the current study, four of these sets of category intersection parameters will be 

used for the 20th item to make four levels of this study factor. These four levels of b1, b2, 

and b3 values were equal to -2, 0, and 2; respectively, then -1, 0, and 1; 0, 1, and 2; and 

finally -2, -1, and 0. These values reflected differing degrees of difficulty across steps of 

the item and for the item as a whole. 

Study Design Overview 

This study evaluated the Mantel, GMH, and OLR’s power to detect DIF and their 

associated Type I error rates when the GPCM is the generating IRT parameter model. 

The power study involved 4 factors that were fully crossed: 4 (DIF patterns) x 3 (DIF 

magnitudes) x 3 (studied item discrimination) x 4 (studied item difficulty) = 144 fully 

crossed conditions. There were 1000 replications for each condition.  

The Type I error portion of this study involved conditions where no DIF was 

present. Three factors were fully crossed: 3 (group ability differences) x 4 (studied item 

difficulty) x 3 (studied item discrimination) = 36 fully crossed conditions. Type I error 

was only calculated for the 20th item.  

Data Generation  

Data was generated using the IRTGEN program (Whittaker, Fitzpatrick, Dodd, & 

Williams, 2003) for SAS, which simulates item responses and trait levels for 
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dichotomous and polytomous models within the IRT framework. IRTGEN generates item 

responses by randomly assigning a known theta value from a normal distribution for a 

simulee. Using this theta value and item parameters for an item, the probability of a  

simulee responding in each of the four response categories is computed based on the 

Generalized Partial Credit Model (Muraki, 1992, 1993). These probabilities were then 

summed, providing cumulative subtotals for each response category. A random number 

from a uniform distribution was then selected to introduce random error into the 

simulee’s response. If the random number was at or below the cumulative probability for 

a certain response category, the simulee was awarded that response category score. This 

procedure was then be repeated for every item and every simulee. 

The same generating GPCM item parameters used by French and Miller (1996) 

were used in this study (see Appendix A) except that five of the items used by French and 

Miller were removed in order to have the 20 items specified in this study. The difficulty 

and discrimination parameters for the 19 non-studied items were not manipulated but 

varied across conditions for the 20th item. DIF was also added solely to the 20th item. 

Items specified to contain DIF, with the exception of the balanced pattern, had higher 

category location parameters, according to the specification for the condition under study, 

for examinees in the focal group indicating that the transition to the category or 

categories under investigation was more difficult for the focal group; the remaining 

transitions were identical for both groups.  In the balanced pattern, the transition from the 

lowest to the second category was more difficult for the focal group, while the transition 

from the third to the highest category was easier for the focal group. The remaining 

transitions were the same for both groups.  
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Once DIF was added to the item under investigation, data was generated under the 

GPCM. Responses for the reference and focal groups were generated separately, and then 

were combined to create one data set consisting of both reference and focal group 

responses.  

DIF Analyses  

SAS 9.1 (SAS Institute, 2001) were used to conduct the DIF analyses. For each 

simulated data set the Mantel, GMH, and OLR were used for DIF detection. The item 

being examined for DIF was included in the total score as recommended by Zwick et al. 

(1993). Prior to DIF detection, matching was performed. A form of thick matching was 

used because it allowed more cells with non-zero observation frequencies to be used 

(Donoghue & Allen, 1993). The matching variable was created to have the lowest eight 

scores pooled together and the highest eight scores pooled together. Once the pooling of 

the eight lowest and highest scores had been completed, equal intervals of four were used 

to create the remaining matched groups (Donoghue & Allen, 1993). After matching was 

done, the GMH, and Mantel statistics (Equations 3, and 7, respectively) were calculated 

for each of the 1,000 replicated datasets using the PROC FREQ procedure in SAS 9.1. 

For the OLR procedure, a Chi-squared test for significance of the group (see Equation 

12) was performed. Because nonuniform DIF was not examined in this study, the 

interaction variables were not tested for significance, only the grouping variable. In 

conditions where DIF was present in the 20th item that item was examined for power. In 

non-DIF conditions, the 20th item was examined for its Type I error rate across 

replications. Type I error was the proportion of times out of 1,000 replications where DIF 

was falsely identified at the 0.05 level of significance. Power was the proportion of times 
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out of 1,000 replications that DIF was correctly identified at the 0.05 level of 

significance. 
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CHAPTER 4 

RESULTS 

Introduction 

The purpose of this Monte Carlo simulation study was to investigate the efficacy 

of three DIF detection methods, the Mantel, GMH, and the OLR, under various study 

conditions. A total of 180 unique conditions were simulated. In each condition, 1000 

replications were performed, resulting in a total of 180,000 simulated data sets. Tables 4-

9 present the power rates for the DIF conditions and Table 10 presents the Type I error 

rates for the non-DIF conditions. Tables 11-14 present the mean scores for difficult and 

easy items for the Shift-low and Shift-high conditions. Figures 6-9 depict the effects of 

item discrimination at each level of item step difficulty. Figures 10 and 11 illustrate the 

difference in item step difficulties for two conditions within the Shift-low pattern and 

figures 12 and 13 illustrate the difference in item step difficulties for two conditions 

within the Shift-high pattern.  

Power Main Effects 

DIF patterns. The greatest mean power rates for the GMH, Mantel, and OLR 

procedures (100% for each) occurred under the constant DIF pattern (see Table 4). This 

finding is consistent with previous research findings by Wang & Su (2004b) who found 

that the Mantel and the GMH procedures were more powerful under the constant DIF 

pattern than under any other pattern. Nine conditions out of 36 conditions in the constant 

DIF pattern displayed these extremely high power rates for all three methods. The Mantel  
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Table 4 

Power rate across 1000 replications for the constant DIF pattern of the 20th Item 

DIF Detection Methods Item 
Discrimination 

Studied Item 
Difficulty Values 

DIF 
Magnitude GMH Mantel OLR 

0.8 -2 0 2 0.1 16.5 25.0 25.3 
 -1 0 1  20.8 28.9 30.2 
 0 1 2  21.1 29.1 29.4 
 -2 -1 0  15.2 23.8 27.3 
 -2 0 2 0.25 73.7 85.3* 87.0*
 -1 0 1  86.7* 94.9* 94.3*
 0 1 2  79.9* 92.1* 90.7*
 -2 -1 0  84.2* 92.7* 92.3*
 -2 0 2 0.4 99.4* 100.0* 100.0*
 -1 0 1  99.9* 100.0* 100.0*
 0 1 2  99.6* 99.9* 99.9*
 -2 -1 0  100.0* 100.0* 100.0*

1.2 -2 0 2 0.1 21.4 32.6 33.8 
 -1 0 1  29.5 44.9 45.9 
 0 1 2  23.8 37.4 39.7 
 -2 -1 0  30.1 43.0 43.3 
 -2 0 2 0.25 91.3* 97.7* 97.6*
 -1 0 1  98.2* 99.5* 99.6*
 0 1 2  95.2* 98.8* 98.7*
 -2 -1 0  97.1* 99.6* 99.6*
 -2 0 2 0.4 100.0* 100.0* 100.0*
 -1 0 1  100.0* 100.0* 100.0*
 0 1 2  100.0* 100.0* 100.0*
 -2 -1 0  100.0* 100.0* 100.0*

1.6 -2 0 2 0.1 25.5 39.6 41.1 
 -1 0 1  39.4 57.1 59.0 
 0 1 2  37.0 51.2 53.4 
 -2 -1 0  35.6 50.3 50.2 
 -2 0 2 0.25 97.5* 99.1* 99.3*
 -1 0 1  99.8* 100.0* 100.0*
 0 1 2  99.1* 99.8* 99.6*
 -2 -1 0  99.3* 100.0* 100.0*
 -2 0 2 0.4 100.0* 100.0* 100.0*
 -1 0 1  100.0* 100.0* 100.0*
 0 1 2  100.0* 100.0* 100.0*
 -2 -1 0  100.0* 100.0* 100.0*

*Power rate ≥ 80%. 
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and OLR procedures also had four additional mean power rates of 100% for a total of 13 

under the constant DIF pattern. The lowest power to detect DIF for the GMH, Mantel, 

and OLR procedures were 15.2%, 23.8%, and 25.3%, respectively. 

Under the constant DIF pattern, twenty-three out of 36 conditions or 64% 

displayed power rates for all three procedures that matched or exceeded the widely 

accepted power rate of 80% under the constant DIF pattern. In 20 of those 23 conditions, 

the Mantel and OLR procedures had power rates that were in the 90 to100 percent range; 

in the remaining three conditions the GMH procedure had power rates that were in the 81 

to 90 percent range. The mean power rate for the GMH procedure was slightly lower than 

the Mantel and OLR procedures when the DIF magnitude was 0.25 or 0.4. When the DIF 

magnitude was 0.1, the GMH had a mean power rate of 26.3% compared to 38.6% and 

39.9% for the Mantel and OLR, respectively. 

In the shift-low pattern (see Table 5), the greatest mean power rate for the GMH, Mantel, 

and OLR procedures were 99.8%, 100%, and 100%, respectively. This occurred in one 

condition. There were a total of 10 conditions or 28% of the shift-low pattern conditions 

in which all three DIF detection methods had mean power rates of at least 80%. Of those 

10 conditions, 7 conditions had mean power rates for all three procedures that were in the 

90 percents. The lowest powers to detect DIF for the GMH, Mantel, and OLR procedures 

occurred in one condition and were 5%, 4.7%, and 4.8%, respectively. Under the shift-

low pattern, the GMH consistently had a greater mean power to detect DIF at all levels of 

DIF magnitude than the Mantel and OLR procedures. When the DIF magnitude was 0.1, 

the GMH had a mean power rate of 9.6% compared to 8.3% and 9.0% for the Mantel and 

OLR, respectively.  When the DIF magnitude was 0.25, the GMH had a mean power rate  
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Table 5 

Power rate across 1000 replications for the shift-low DIF pattern of the 20th Item 

DIF Detection Methods Item 
Discrimination 

Studied Item Difficulty 
Values 

DIF 
Magnitude GMH Mantel OLR 

0.8 -2 0 2 0.1 7.5  7.7  7.7 
 -1 0 1  6.9  5.7 6.5 
 0 1 2  10.6 10.8 13.1 
 -2 -1 0  5.0 4.7 4.8 
 -2 0 2 0.25 79.9* 92.1* 90.7* 
 -1 0 1  84.2* 92.7* 92.3* 
 0 1 2  91.3* 97.7* 97.6* 
 -2 -1 0  98.2* 99.5* 99.6* 
 -2 0 2 0.4 38.8 19.3 19.4 
 -1 0 1  65.9 39.5  43.1 
 0 1 2  83.2* 78.5 84.5* 
 -2 -1 0  27.0 14.4 12.7 

1.2 -2 0 2 0.1 7.4 6.1 5.5 
 -1 0 1  9.9 8.0 9.0 
 0 1 2  14.5 12.4 13.9 
 -2 -1 0  7.8 7.0 7.7 
 -2 0 2 0.25 95.2* 98.8* 98.7* 
 -1 0 1  97.1* 99.6* 99.6* 
 0 1 2  97.5* 99.1* 99.3* 
 -2 -1 0  99.8* 100.0* 100.0* 
 -2 0 2 0.4 64.9 27.9 28.5 
 -1 0 1  90.9* 67.5 69.8 
 0 1 2  97.8* 93.2* 95.3* 
 -2 -1 0  45.0 17.2 14.7 

1.6 -2 0 2 0.1 6.5 5.3 5.5 
 -1 0 1  12.9 7.8 8.3 
 0 1 2  19.3 19.3 20.4 
 -2 -1 0  6.4 4.7 5.2 
 -2 0 2 0.25 31.8 13.5 14.1 
 -1 0 1  65.5 39.5 43.1 
 0 1 2  83.7* 73.2 79.0 
 -2 -1 0  22.2 8.4 9.3 
 -2 0 2 0.4 72.2 29.8 30.6 
 -1 0 1  97.8* 73.2 75.6 
 0 1 2  99.4* 98.0* 98.4* 
 -2 -1 0  55.2 15.9 15.0 

*Power rate ≥ 80%. 
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of 78.9% compared to 76.2% and 77.0% for the Mantel and OLR and when the DIF 

magnitude was 0.4, the GMH had a mean power rate of 68.9% compared to 48.4% and 

49.3% for the Mantel and OLR procedures. 

Under the shift-high pattern, (see Table 6), the greatest mean power rates for the 

GMH, Mantel, and OLR procedures occurred in one condition and were 99.7%, 98.3%, 

and 99.1%, respectively. Only two conditions had mean power rates for all three 

procedures that exceeded 80%; these conditions had mean power rates that were in the 90 

percents. The lowest power rates for the three methods were 5.9%, 4.9%, and 5.4%, 

respectively. Under the shift-high pattern the GMH performed somewhat better than the 

Mantel and OLR procedures at all levels of DIF magnitude; even though there were only 

five out of 36 conditions in which the mean power rate for the GMH was at or above the 

widely accepted rate of 80%. Additionally, under the Shift-high DIF pattern, the third and 

most difficult level (0, 1, 2) of the studied item category intersection parameters was 

consistently associated with the lowest power to detect DIF in the GMH, Mantel, and 

OLR procedures. These low power rates could be due to the fact that embedding DIF in 

the last category of a difficult item would primarily affect those few examinees at the 

upper end of the ability continuum. This would result in less contrast between reference 

and focal groups throughout the ability continuum, and, therefore, less DIF to detect. 

In the balanced pattern (see Table 7), the greatest mean power rates for the GMH, 

Mantel, and OLR procedures were 100%, 87.2%, and 94.4%, respectively. Only two 

conditions in the balanced pattern had power rates in which all three DIF detection 

methods had mean power rates that exceeded 80%. The GMH had mean power rates that 
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were considerably better than the Mantel and OLR procedures for all conditions under 

the balanced pattern. 
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Table 6 

Power rate across 1000 replications for the shift-high DIF pattern of the 20th Item 

DIF Detection Methods Item 
Discrimination 

Studied Item Difficulty 
Values 

DIF 
Magnitude GMH Mantel OLR 

0.8 -2 0 2 0.1 6.5 6.0 5.6 
 -1 0 1  8.0 6.6 6.9 
 0 1 2  5.9 4.9 5.8 
 -2 -1 0  9.1 10.0 11.6 
 -2 0 2 0.25 16.3 11.0 10.2 
 -1 0 1  27.0 16.5 16.8 
 0 1 2  9.0 6.9 7.2 
 -2 -1 0  36.8 32.4 38.0 
 -2 0 2 0.4 31.6 14.1 14.4 
 -1 0 1  60.1 34.0 36.3 
 0 1 2  21.6 8.9 8.7 
 -2 -1 0  81.3* 73.5 79.5 

1.2 -2 0 2 0.1 7.2 5.9 5.7 
 -1 0 1  9.3 7.4 8.9 
 0 1 2  6.7 5.6 5.7 
 -2 -1 0  12.2 11.0 12.2 
 -2 0 2 0.25 17.9 8.3 9.1 
 -1 0 1  43.2 25.0 26.3 
 0 1 2  16.6 7.6 6.7 
 -2 -1 0  69.3 60.0 64.4 
 -2 0 2 0.4 41.3 12.4 13.1 
 -1 0 1  81.5* 43.7 46.8 
 0 1 2  32.7 10.6 9.4 
 -2 -1 0  98.3* 92.5* 94.7* 

1.6 -2 0 2 0.1 7.7 6.0 6.1 
 -1 0 1  13.8 9.9 11.3 
 0 1 2  7.5 5.1 5.4 
 -2 -1 0  19.5 20.5 21.6 
 -2 0 2 0.25 23.5    8.0 8.1 
 -1 0 1  57.9    26.9 28.9 
 0 1 2  16.0 6.6 7.3 
 -2 -1 0  83.5* 71.7 76.3 
 -2 0 2 0.4 48.9 14.2 14.4 
 -1 0 1  94.9* 58.3 61.9 
 0 1 2  38.3 11.4 11.3 
 -2 -1 0  99.7* 98.3* 99.1* 

*Power rate ≥ 80%. 
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Table 7 

Power rate across 1000 replications, for the balanced DIF pattern of the 20th item 

DIF Detection Methods Item 
Discrimination 

Studied Item Difficulty 
Values 

DIF 
Magnitude GMH Mantel OLR 

0.8 -2 0 2 0.1 7.7 4.1 4.6 
 -1 0 1  11.3 4.4 4.4 
 0 1 2  9.8 8.2 9.2 
 -2 -1 0  11.2 7.6 10.1 
 -2 0 2 0.25 31.5 4.6 4.7 
 -1 0 1  49.7 5.2 5.9 
 0 1 2  45.7 18.2 24.9 
 -2 -1 0  46.1 18.9 24.6 
 -2 0 2 0.4 75.7 5.8 6.1 
 -1 0 1  92.4* 6.3 6.3 
 0 1 2  89.6* 43.2 58.4 
 -2 -1 0  88.3* 41.9 53.4 

1.2 -2 0 2 0.1 10.2 5.4 5.9 
 -1 0 1  17.1 4.9 5.2 
 0 1 2  14.7 9.0 11.6 
 -2 -1 0  14.1 9.4 11.2 
 -2 0 2 0.25 46.3 4.7 4.9 
 -1 0 1  82.6* 3.7 4.4 
 0 1 2  74.5 34.4 42.5 
 -2 -1 0  73.0 36.5 45.7 
 -2 0 2 0.4 90.5* 4.9 5.2 
 -1 0 1  100.0* 5.6 94.4*
 0 1 2  99.2* 69.1 79.7 
 -2 -1 0  99.2* 70.0 80.1*

1.6 -2 0 2 0.1 10.7 4.3 4.9 
 -1 0 1  22.0 5.3 4.7 
 0 1 2  21.4 13.6 16.0 
 -2 -1 0  21.3     13.2 15.6 
 -2 0 2 0.25 57.5 4.7 5.4 
 -1 0 1  92.4* 4.7 5.4 
 0 1 2  89.6* 47.1 55.2 
 -2 -1 0  89.6* 48.1 56.2 
 -2 0 2 0.4 97.7* 5.2 5.6 
 -1 0 1  100.0* 6.1 5.8 
 0 1 2  100.0* 82.9* 91.2*
 -2 -1 0  100.0* 87.2* 92.5*

*Power rate ≥ 80%. 
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The constant DIF pattern had the greatest number of instances (71) where the 

GMH, Mantel, and OLR’s power to detect DIF was at least 80%. The shift-low pattern 

had 35 instances; the balanced pattern had 21, and the shift-high pattern, 12. Table 8 

summarizes the power rates at or above 80% for all three DIF detection methods under 

the DIF pattern conditions. All three methods displayed the greatest power to detect DIF 

under the Constant DIF pattern condition. And across all DIF patterns, the GMH 

outperformed the Mantel and OLR procedures.  

DIF Magnitude.  In general, across all levels and for all three DIF detection 

methods, as the DIF magnitude increased so too did the power to detect DIF. This finding 

is consistent with previous research (e.g. Clauser et al., 1991). The converse was also 

true; low power to detect DIF was associated with low DIF magnitudes (see Table 9 & 

Figures 10-13). This trend was more consistent and pronounced under the constant DIF 

pattern conditions. Under the constant DIF pattern (see Table 4) when the DIF magnitude 

was 0.25, in two conditions the Mantel and OLR procedures had mean power rates of 

100%.  Additionally, under the constant DIF pattern, when the DIF magnitude was 0.4 in 

all but three of the twelve conditions, mean power rates for all three methods were 100%; 

in the remaining cases, the Mantel and OLR procedures had mean power rates of 100% 

whilst the GMH had power rates very close to 100% (99.4%, 99.6%, and 99.9%). 

Further, under the constant DIF pattern, when the DIF magnitude was 0.1, power to 

detect DIF for the GMH, Mantel, and OLR was quite low ranging from 4.7 to 57.1 across 

the four DIF patterns. Further, at all DIF magnitude levels, except when the DIF 

magnitude value was 0.1, the GMH had the greatest mean power to detect DIF (see Table 

9). 
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Table 8 

Count across DIF patterns for power at or above 80% for the GMH, Mantel, and OLR 

procedures across 1,000 replications 

DIF Detection Methods 
DIF Pattern GMH Mantel OLR 

Total Pattern 
Count 

Constant 23 24 24 71 

Shift-low 14 10 11 35 

Shift-high 6 2 4 12 

Balanced 15 2 4 21 

Total 58 38 43  
 

 

 

Table 9 

Mean power rates across all conditions 

DIF Detection Method 
Condition GMH Mantel OLR 

Item Discrimination    
0.8 47.24 38.20 39.72 

1.2 57.75 44.54 47.79 

1.6 58.74 42.60 44.11 

Item Difficulty    
−2, 0, 2 46.06 30.82 31.08 

−1, 0, 1 60.24 39.98 43.38 

0, 1, 2 54.22 46.77 49.14 

−2, −1, 0 57.79 49.55 51.90 

Item Magnitude    
0.1 16.28 17.27 18.24 

0.25 67.24 53.64 55.16 

0.4 81.25 55.84 59.59 
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Figure 6. Effects of Item Discrimination at step difficulty (-2, 0, 2). 

 

 
Figure 7. Effects of Item Discrimination at step difficulty (-1, 0, 1). 
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Figure 8. Effects of Item Discrimination at step difficulty (0, 1, 2). 
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Figure 9. Effects of Item Discrimination at step difficulty (-2,-1, 0). 
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Studied Item Discrimination. Across all conditions when the item discrimination 

value was small (0.8) coupled with a DIF magnitude of 0.1, the power rates for all three 

methods were at their lowest. Even when the studied item discrimination increased, this 

trend continued as long as the DIF magnitude was 0.1. Under the shift-low pattern, when 

the studied item discrimination and DIF magnitude values were moderate (i.e., 1.2, and 

0.25, respectively) the power rates for the GMH, Mantel, and OLR were at their highest. 

Table 9 shows the effects of item discrimination on the DIF detection rates. The GMH 

was the only procedure to consistently show greater power to detect DIF as the item 

discrimination level increased. Figures 6-9 illustrate the effects of item discrimination at 

each level of item step difficulty. The figures reveal that at all levels of step difficulty, the 

mean power to detect DIF increased as item discrimination increased when the DIF 

magnitude was small (.01).  When the DIF magnitude was larger (.25 or .4), although the 

detection rate increased when the item discrimination increased from .8 to 1.2, there were 

some cases where the detection rate decreased when item discrimination increased from 

1.2 to 1.6. 

Studied Item Category Intersection Parameter Magnitude (difficulty). The effect 

of item difficulty (Hard, 0 1 2 vs. Easy, -2 -1 0) on the detection rate depended on how 

DIF was embedded. Two conditions (67 and 68) under the shift-low pattern, clearly 

illustrated the effect that item difficulty had on DIF detection rates (see Figures 10 and 

11). In condition 67, the parameter values were as follows:  discrimination 1.2, category 

intersection parameter magnitudes 0, 1, 2, and DIF magnitude 0.4.  In condition 68, the 

parameter values were as follows:  discrimination 1.2, category intersection parameter 

(i.e., difficulty) magnitudes -2,-1,0  and DIF magnitude 0.4.  Because of the difficulty  
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Figure 10. Condition 67. Difficult item (0, 1, 2 item difficulty). Making the item more 
difficult in the first step (shift-low pattern) affected examinees in all ranges, thus resulting 
in more DIF detection.  
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Figure 11. Condition 68. Easy item (-2, -1, 0 item difficulty). Making the first step more 
difficult (shift-low pattern) primarily affected examinees at the bottom of the range, 
resulting in less DIF detection. 
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values associated with condition 67, the item was simulated to be harder than the item in 

condition 68 which had b values of -2, -1, and 0 simulating an item that was easy. The 

mean scores for the reference and focal groups and the number of reference and focal 

group examinees in each score interval for these two conditions are presented in Tables 

11 and 12. When DIF was embedded in the first category of an already difficult item so 

that the difficulty parameters became 0.4, 1, and 2 for the focal group versus 0, 1, and 2 

for the reference group, the item became more difficult in the first step, affecting 

examinees in all ranges of the ability continuum, resulting in more DIF detection (see 

Figure 10). Consequently, the GMH, Mantel, and OLR detection procedures exhibited 

high power rates (97.8, 93.2, and 95.3, respectively). When DIF was embedded in the 

first category of a relatively easy item so that the difficulty parameters became -1.6, -1, 

and 0 for the focal group versus -2, -1, and 0 for the reference group, the item became 

more difficult in the first step and primarily affected only examinees at the bottom of the 

range (see Figure 11). This pattern was reversed for the shift-high pattern. Under the 

shift-high pattern in condition 103, the parameter values were as follows:  discrimination 

1.2, category intersection parameter magnitudes 0, 1, 2, and DIF magnitude 0.4.  In 

condition 104, the parameter values were as follows:  discrimination 1.2, category 

intersection parameter magnitudes -2,-1,0  and DIF magnitude 0.4. Because of the 

difficulty values associated with condition 103, the item was simulated to be harder than 

the item in condition 104 which had b values of -2, -1, and 0 simulating an item that was 

easy. The mean scores for the reference and focal groups and the number of reference and 

focal group examinees in each score interval for these two conditions are presented in 

Tables 13 and 14. Figure 12 illustrates that when DIF was embedded in the last category  
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Table 11 

Condition 67: Difficult item (0, 1, 2 item difficulty) for shift-low pattern 

Score 
Interval NR 

Mean Score 
Reference 

Group NF 

Mean Score 
Focal Group 

  1 11 1.09 17 1 
  2 12 1.00 25 1 
  3 35 1.06 33 1 
  4 54 1.20 47 1.1 
  5 73 1.31 47 1.17 
  6 62 1.42 79 1.13 
  7 74 1.70 62 1.55 
  8 49 2.04 55 1.86 
  9 42 2.10 44 2.11 
10 29 2.62 36 2.53 
11 29 2.76 31 2.81 
12 22 3.09 13 3.23 
13   8 3.63 11 3.64 

 

 

Table 12 

Condition 68: Easy item (-2, -1, 0 item difficulty) for shift-low pattern 

Score 
Interval NR 

Mean Score 
Reference 

Group NF 

Mean Score 
Focal Group 

  1 11 1.27 14 1.07 
  2 14 1.71 22 1.41 
  3 25 1.88 18 2.11 
  4 33 2.39 29 2.38 
  5 53 2.72 57 2.82 
  6 70 3.21 64 3.14 
  7 76 3.38 82 3.46 
  8 60 3.60 66 3.58 
  9 53 3.83 55 3.78 
10 43 3.98 36 3.94 
11 32 3.97 28 3.96 
12 17 4.00 17 4.00 
13 13 4.00 12 4.00 
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Table 13 

Condition 103. Difficult item (0, 1, 2 item difficulty for shift-high pattern 

Score 
Interval NR 

Mean Score 
Reference 

Group NF 

Mean Score 
Focal Group 

  1 9 1.00 22 1.00 
  2 22 1.05 22 1.09 
  3 30 1.00 19 1.05 
  4 56 1.18 43 1.12 
  5 58 1.28 58 1.17 
  6 72 1.47 72 1.53 
  7 61 1.67 66 1.65 
  8 51 1.94 56 2.00 
  9 50 2.38 43 2.30 
10 35 2.66 52 2.52 
11 26 2.85 24 3.00 
12 19 3.68 15 3.07 
13 11 3.45 8 3.25 

 

 

Table 14 

Condition 104. Easy item (-2, -1, 0 item difficulty for shift-high pattern 

Score 
Interval NR 

Mean Score 
Reference 

Group NF 

Mean Score 
Focal Group 

  1 10 1.50 12 1.50 
  2 23 1.61 20 1.65 
  3 21 2.14 26 1.92 
  4 44 2.39 31 2.35 
  5 39 2.82 57 2.70 
  6 68 3.07 64 2.98 
  7 48 3.48 79 3.13 
  8 74 3.54 51 3.51 
  9 52 3.67 54 3.65 
10 48 3.90 41 3.73 
11 39 3.92 38 3.92 
12 20 4.00 17 4.00 
13 14 4.00 10 4.00 
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Figure 12. Condition 103. Difficult Item (0, 1, 2 item difficulty). Making the last step 
even more difficult (Shift-high pattern) affected only very high ability examinees. 

of an already difficult item so that the difficulty parameters became 0, 1, and 2.4 for the 

focal group versus 0, 1, and 2 for the reference group, the item became more difficult in 

the last step, affecting only examinees in the upper ability range. Because only examinees 

in the upper ability range were affected, less contrast existed between examinees in the 

reference and focal groups over the entire ability continuum, except at the upper extreme, 

thus making it harder to detect DIF. Consequently, the GMH, Mantel, and OLR detection 

procedures exhibited low power rates (32.7, 10.6, and 9.4, respectively) as there was little 

DIF to detect.  

Figure 13 illustrates that when DIF was embedded in the last category of a 

relatively easy item so that the difficulty parameters became -2, -1, and 0.4 for the focal 

group versus -2, -1, and 0 for the reference group, the last step became more difficult and 

affected examinees in all ability ranges. This made it easier to detect DIF (i.e., more DIF 

present), resulting in high power rates (98.3, 92.5, and 94.7, respectively) for the GMH,  
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Figure13. Condition 104. Easy item (-2, -1, 0 item difficulty). Making the last step more 
difficult (Shift-high pattern) affected examinees in all ability ranges. 

Mantel, and OLR procedures. This finding is consistent with that of Donoghue and Allen 

(1993), even though their study examined DIF in dichotomous items and did not include 

polytomous items. These researchers found that for easy items, increasing the 

discrimination in the studied item made between group differences larger, thus resulting 

in better DIF detection for the Mantel-Haenszel method. 

The effect of the spread of item difficulty (-2 0 2 vs. -1 0 1) on the detection rates 

was consistent throughout conditions (see Figures 6 and 7). The first level (-2, 0, 2) of the 

studied item category intersection parameter was consistently associated with the  

lowest power to detect DIF in all methods. Embedding DIF on an extreme value (e.g., -2 

or 2) would affect only a small number of examinees (i.e, either the most able or least 

able examinees) resulting in less DIF to detect; thus, yielding lower power rates.  

Type I Error. The results for the Type I error rates are displayed in Table 10 for 

all conditions including the three levels of the group ability difference factor. For the  
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Table 10 

Type I error rates across 1,000 replications for the 20th item 

DIF Detection Methods 
Item 

Discrimination 
Studied Item Difficulty 

Values 

Group 
Ability 

Difference GMH Mantel OLR 
0.8 -2 0 2 0 4.7 4.6 4.8 

 -1 0 1  5.3 5.1 4.9 
 0 1 2  5.3 4.9 5.3 
 -2 -1 0  4.6 3.9 3.9 
 -2 0 2 -0.5 4.8 5.8 6.8 
 -1 0 1  5.1 4.1 3.7 
 0 1 2  5.5 4.4 4.8 
 -2 -1 0  5.4 5.3 5.2 
 -2 0 2 -1 5.6 4.6 4.9 
 -1 0 1  4.5 4.6 4.7 
 0 1 2  4.4 4.9 5.9 
 -2 -1 0  4.2 5.7 5.8 

1.2 -2 0 2 0 5.6 7.2 7.9*
 -1 0 1  5.5 4.8 5.3 
 0 1 2  4.8 4.7 5.0 
 -2 -1 0  3.1 3.6 4.2 
 -2 0 2 -0.5 4.7 4.9 4.3 
 -1 0 1  6.4 7.1 6.2 
 0 1 2  5.3 5.5 5.2 
 -2 -1 0  6.0 5.7 5.6 
 -2 0 2 -1 6.0 7.6* 6.4 
 -1 0 1  6.8 8.4* 6.5 
 0 1 2  3.9 5.9 5.3 
 -2 -1 0  6.4 7.5 6.4 

1.6 -2 0 2 0 5.5 5.0 4.8 
 -1 0 1  4.4 5.2 5.5 
 0 1 2  4.9 5.4 5.0 
 -2 -1 0  5.0 4.8 5.3 
 -2 0 2 -0.5 7.2 6.3 5.8 
 -1 0 1  7.0 7.1 7.7*
 0 1 2  6.4 7.6* 6.5 
 -2 -1 0  6.7 7.5 6.4 
 -2 0 2 -1 8.6* 10.5* 6.9 
 -1 0 1  7.4 11.6* 10.0*
 0 1 2  5.6 8.3* 6.1 
 -2      -1 0  10.7* 13.7* 10.4*

*Type I error rate not meeting Bradley’s (1978) liberal robustness criterion. 
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evaluation of Type I error conditions, Bradley’s (1978) liberal robustness criterion was 

used. That is, each DIF detection procedure was interpreted as providing adequate control 

of Type I error if the estimated Type I error rate was within the range of  

αnominal ± .5 αnominal         (20) 

or .025 to .075, for this study where alpha was 0.05.  

The Type I  error rates were all close to the nominal rate of .05 in all conditions in 

which there were no mean latent trait differences between the reference and focal groups 

and when the item discrimination value was moderate or high (i.e., 1.2 or 1.6). In most 

conditions where the focal group had a lower mean than the reference group, Type I error 

rates exceeded the nominal rate of 0.05 but fell within Bradley’s (1978) liberal robustness 

criterion of .025 to .075 range for this study. Also, for conditions in which the item 

discrimination value was high, and there were mean latent trait differences between 

groups, the GMH, Mantel, and OLR procedures began to lose control over their average 

Type I error. This phenomenon became even more pronounced when the groups differed 

in ability by as much as one standard deviation. When the groups differed by as much as 

one standard deviation and the item discrimination was high, the type I error rates 

exceeded Bradley’s liberal robustness criterion at all levels of item step difficulty. Nine 

conditions had Type I error rates that fell outside of Bradley’s criterion. The GMH had 

only one condition that had a type I error rate outside of Bradley’s liberal robustness 

criterion range, the OLR had four, and the Mantel had seven conditions where the type I 

error rates did not meet Bradley’s liberal robustness criterion. The different levels of the 

category intersection parameters did not appear to have an effect on the Type I error rates 

except when the item discrimination value was high (1.6) and the difference in group 
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ability was one standard deviation. In that scenario, the Type I error rates for the three 

methods departed substantially from the nominal rate of .05, to yield 10.7, 13.7, and 10.4 

for the GMH, Mantel, and OLR procedures, respectively. 
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CHAPTER 5 

DISCUSSION 

Summary 

The purpose of this study was to investigate the power and Type I error rates for 

the GMH, Mantel, and OLR procedures when there is variation in (a) item discrimination 

parameter values, (b) category intersection magnitudes, (c)  DIF magnitudes, (d) DIF 

patterns within score categories, and (e) average latent traits between the reference and 

focal groups. 

The results of this Monte Carlo simulation study indicated that the GMH 

generally outperformed the Mantel and OLR procedures across various DIF patterns in its 

ability to detect DIF. Table 8 presents a count across all DIF patterns for power at or 

above 80%. Consistent with previous research (Clauser et al., 1991; Hidalgo & Lopez-

Pina, 2004), the main effects on the discrimination and category intersection parameters 

were found to be partially dependent on DIF magnitude. That is, as DIF magnitude 

increased so too did the power to detect DIF. This was true for all three methods. As 

could be expected, in conditions where the item discrimination and DIF magnitude were 

low, power to detect DIF was at its weakest in all three methods. The results of this 

investigation also supported previous research findings (e.g., Kristanjsson et al. 2005) 

that the GMH showed higher power to detect uniform DIF when the item discrimination 

was moderate or high than when it was low. Additionally, even though Rogers and 

Swaminathan’s (1993) study examined only dichotomous items, their research results 
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support this research finding in that their investigation revealed that items of both 

moderate difficulty and high discrimination were more easily detected for DIF by the 

Mantel-Haenszel and LR procedures. 

The study findings of this investigation clearly showed that a small DIF 

magnitude of 0.1 did not impact DIF detection rates and, perhaps, could be viewed as 

trivial DIF within the context of these particular study conditions. This investigation also 

revealed that uniform DIF detection is directly related to item discrimination. In general, 

the highest mean power rates occurred at the highest level of the studied item 

discrimination and power to detect DIF generally increased as the item discrimination 

level increased. This finding might seem problematic for practitioners as test developers 

desire items that can effectively discriminate between examinees of high ability and low 

ability on the construct or criterion of interest. Furthermore, highly discriminating items 

would more than likely contribute to higher instrument reliability. However, it is 

important to note that highly discriminating items that are flagged for DIF do not 

necessarily imply that the item is biased; they merely indicate that the items in question 

are functioning differently for the two groups that have been matched on ability. In 

reality, a substantial review of the item or items that exhibit DIF would need to follow a 

statistical DIF analyses to determine whether or not the items were biased. 

The results of this investigation regarding Type I error rates were consistent with 

previous research findings (e.g., Zwick et al., 1993) which indicated that a difference in 

group means can lead to an increase in Type I error rates, depending on the method of 

DIF detection used.  Additionally, study findings revealed that when the item 

discrimination value was high and the group means differed by as much as one standard 
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deviation, inflation of Type I error occurred. This increase in Type I error in conditions 

where no DIF is present, indicated that impact (true differences in group ability) was 

flagged as DIF.  

All three DIF detection methods used in this investigation were equally easy to 

implement and use. However, the GMH showed the greatest power to detect DIF in most 

conditions. This is inconsistent with previous research findings (Su &Wang, 2005; Wang 

& Su, 2004b) that indicated that the Mantel had higher DIF detection rates than the GMH 

under the constant, and balanced patterns and performed roughly the same as the Mantel 

under the shift-low, and shift-high patterns. Zwick et al.’s (1993) also concluded from 

their research study that for most DIF analyses the Mantel would be a better method than 

the GMH. These differences in research findings could be attributed to the use of the 

GPCM as the generating parameter model in this investigation compared to the use of the 

PCM in the Su and Wang, and Wang and Su investigations. Additionally, the above 

mentioned researchers’ studies did not examine the effect that varying the item 

discrimination would have on DIF detection rates. This investigation clearly showed that 

an item’s discrimination value can impact DIF detection rates. From a practioner’s point 

of view, it seems clear that test developers need not only be concerned with the amount 

of DIF in an item but also with the item’s discrimination value when developing 

assessments or selecting which DIF detection method to use. In the present climate of 

high-stakes testing in the educational arena, due in large part to the enactment of the No 

Child Left Behind Act of 2001,  cut-off marks on many standardized assessments 

determine a child’s and school’s academic standing, locally, state-wide and nationally. 

Even a small amount of DIF in an item could be problematic; therefore, it is incumbent 
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upon test developers to select the best DIF detection procedure to use when developing 

instruments. This study revealed that the GMH is a suitable DIF detection method to use 

for tests that are comprised of polytomous data. 

Although, this investigation involved only uniform DIF, the GMH is sensitive to 

both uniform and non-uniform DIF because it tests along the entire response distribution; 

this is another advantage of the GMH. The GMH procedure is, therefore, recommended 

as the DIF detection method of choice to detect uniform DIF when the data is 

polytomous, and item discrimination is suspected to vary across items. 

Limitations and Future Research 

This investigation examined DIF in only one polytomous item, however, further 

research is needed to assess DIF in polytomous items when a test contains multiple DIF 

items. It is more than likely that in a real testing situation, a test would have more than 

one DIF item; how the GMH, Mantel, and OLR procedures would perform under similar 

study conditions with more than one studied item would be of interest to test developers. 

Additionally, this study simulated a single test with 20 items. Wang & Su (2004b) in their 

investigation simulated three tests - a short test of 10 items, a medium test of 20 items, 

and a long test of 30 items. Wang & Su examined DIF patterns and the effect that varying 

the test length would have on the GMH and Mantel when the PCM was the generating 

model. Their study results indicated that varying the test length had no effect on the 

GMH’s Type I error and power. Wang & Su’s study findings, however, indicated that 

when the Graded Response Model (GRM) was the generating model, the Mantel and 

GMH yielded slightly better control over Type I error in the 20 item test than in the 10 

item test. Future research is needed to determine if test length will have an effect on Type 
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I error and power rates when the GPCM is the generating parameter model. Also, 

research is needed to determine how the GMH and OLR procedures perform when 

nonuniform DIF is simulated (i.e. when DIF is added to the item discrimination 

parameter) in polytomous items. 
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APPENDIXES 

APPENDIX A 

Item Parameters for Data Generation 

Item Parameters for the First 19 Items    

Item a b1   b2   b3 

1.         0.50  -2.00 1.00 2.00 
2.      0.50       -1.00  0.00 1.00 
3. 0.50   0.00  1.00 2.00 
4. 0.50   -2.00 -1.00 0.00 
5. 0.75    -2.00  0.00 2.00 
6. 0.75   -1.00  0.00 1.00 
7. 0.75       0.00    1.00 2.00 
8. 0.75   -2.00  -1.00 0.00 
9. 1.00   -2.00  0.00 2.00 
10. 1.00   -2.00  1.00 2.00 
11. 1.00    0.00  1.00 2.00 
12. 1.00   -2.00  -1.00 2.00 
13. 1.25   -2.00   0.00 2.00 
14. 1.25    -2.00   1.00 2.00 
15. 1.25    -1.00   0.00 1.00 
16. 1.25    -2.00   -1.00 0.00 
17. 1.50    -2.00   0.00 2.00 
18. 1.50    -2.00   1.00 2.00 
19. 1.50   -1.00   0.00 1.00 
 

Note. These item parameters came from French and Miller (1996).  
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APPENDIX B 

SAS Code 

 

OPTIONS linesize=72; 
%macro dissertation (A=,SD1=,SD2=,SD3=,MAG1=,MAG2=,MAG3=, focabil=, 
seed=, seed1=, seed2=, seed3=, cond=); 
 
%do i=1 %to 1000; *number of replications; 
proc printto log='e:\Dissertation\Diss Code\Results\disslog.txt' new; 
 
proc printto print='e:\Dissertation\Diss Code\Results\outputdisslog.txt' new; 
options mprint; 
 
*reading in item parameters for reference and focal groups; 
data params; 
infile 'e:\Dissertation\Diss Code\GPCMREF.txt' missover; 
input A SD1 SD2 SD3;  
 
data ref20;  
A=&A; 
SD1=&SD1;          *creating 20th item for reference group; 
SD2=&SD2; 
SD3=&SD3; 
 
data foc20; 
A=&A; 
SD1=&SD1 + &MAG1;   *creating 20th item for focal group; 
SD2=&SD2 + &MAG2; 
SD3=&SD3 + &MAG3; 
 
data d2; set params ref20; 
data DFdiff1;set params foc20; 
 
*PROC IML; 
%INCLUDE 'e:\Dissertation\Diss Code\IRTGEN.SAS'; *This has the first seed in the 
IRTGEN prog; 
%IRTGEN(MODEL=GPC, DATA=D2, OUT=D3, NI=20, NE=500); 
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%INCLUDE 'e:\Dissertation\Diss Code\IRTGEN1.SAS'; 
%IRTGEN(MODEL=GPC, DATA=DFdiff1, OUT=D3F, NI=20, NE=500);*This has 
seed1 in the IRTGEN1 prog; 
QUIT; 
 
DATA D3; SET D3; 
FOC=0; 
DATA D3F; SET D3F; 
FOC=1; 
RUN; 
 
data Theta; SET D3 D3F; 
 
********************************GMH***********************************
********; 
data Intervals; set Theta; 
Totscore=sum(of R1-R20); *making matching variable(total score); 
 
if totscore >=20  AND totscore =<27 THEN equint =1; *creating interval variables for 
every simulee; 
else if totscore >= 28  AND totscore =<31 THEN equint = 2; 
else if totscore >= 32 AND totscore =<35 THEN equint = 3; 
else if totscore >=36  AND totscore =<39 THEN equint = 4; 
else if totscore >=40  AND totscore =<43 THEN equint =5; 
else if totscore >=44  AND totscore =<47 THEN equint = 6; 
else if totscore >=48  AND totscore =<51 THEN equint = 7; 
else if totscore >=52  AND totscore =<55 THEN equint = 8; 
else if totscore >=56  AND totscore =<59 THEN equint =9; 
else if totscore >=60  AND totscore =<63 THEN equint = 10; 
else if totscore >=64  AND totscore =<67 THEN equint = 11; 
else if totscore >=68  AND totscore =<71 THEN equint = 12; 
else if totscore >=72  AND totscore =<80 THEN equint = 13; 
run; 
 
 
 
proc sort DATA=Intervals; by equint; *puts all totalscores into their intervals; 
 
ods output CMH=GMH20_ODS;*saves the sig values to a data set for procedures w/o 
output statements; 
ods listing; *shows output in output window; 
Proc Freq data=Intervals; 
Tables equint*FOC*R20/CMH; *******GMH************; 
run;  
ods trace off; 
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data gmh20; set GMH20_ODS; 
rep=&i; 
keep R20gmh R20gmhp rep; 
R20gmh=value; 
R20gmhp=prob; 
if statistic=3; 
run; 
 
***********************************MANTEL****************************
*********; 
 
ods output CMH=Mantel1_ODS; 
ods listing; 
Proc Freq data=Intervals; 
tables equint*foc*R20/cmh; 
run; 
ods trace off; 
 
data Mantel1; set Mantel1_ODS; 
rep=&i; 
keep R20mantel R20mantelprob rep; 
R20mantel=value; 
R20mantelprob=prob; 
if statistic=2; *picks up Mantel info from output; 
run; 
 
 
****************************************************OLR****************
***********************; 
  
PROC LOGISTIC data=Intervals; 
MODEL R20 = totscore foc; 
ods output parameterestimates=logistic_ods; 
run; 
 
data OLR; set logistic_ods; 
keep waldchisq probchisq rep; 
if variable='FOC'; 
rep=&i; 
 
 
DATA ALLPATTERNS; MERGE GMH20 MANTEL1 OLR; BY REP; 
length pattern $9; 
A=&A; 
M1=&MAG1; 
M2=&MAG2; 
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M3=&MAG3; 
cond=&cond; 
 
if &MAG1=&MAG2=&MAG3 THEN pattern = 'constant'; 
else if &MAG2=0 AND &MAG3=0 THEN pattern='shiftlow'; 
else if &MAG1=0 AND &MAG2=0 THEN pattern='shifthigh'; 
else if &MAG2=0 AND &MAG1 NE &MAG3 THEN pattern='balanced'; 
 
 
proc append base=ALLREPS DATA=ALLPATTERNS; 
run; 
 
%end; 
%mend dissertation; 
 
 
********************************Constant DIF 
condition*********************; 
 
%dissertation (A=1.36, SD1=-2, SD2=0, SD3=2, MAG1=0.1, MAG2=0.1, MAG3=0.1, 
focabil=0, seed=51009, seed1=80077, seed2=48877, seed3=18663, cond=1); 
%dissertation (A=1.36, SD1=-1, SD2=0, SD3=1, MAG1=0.1, MAG2=0.1, MAG3=0.1, 
focabil=0, seed=28877, seed1=31445, seed2=50041, seed3=61099, cond=2); 
%dissertation (A=1.36, SD1=0,  SD2=1, SD3=2, MAG1=0.1, MAG2=0.1, MAG3=0.1, 
focabil=0, seed=42167, seed1=77921, seed2=96301, seed3=89579,cond=3); 
%dissertation (A=1.36, SD1=-2, SD2=-1,SD3=0, MAG1=0.1, MAG2=0.1, MAG3=0.1, 
focabil=0, seed=85475, seed1=63553, seed2=10365, seed3=51085,cond=4); 
 
%dissertation (A=2.04,SD1=-2, SD2=0, SD3=2, MAG1=0.1, MAG2=0.1, MAG3=0.1, 
focabil=0, seed=48663, seed1=32639, seed2=81525, seed3=91921,cond=5); 
%dissertation (A=2.04,SD1=-1, SD2=0, SD3=1, MAG1=0.1, MAG2=0.1, MAG3=0.1, 
focabil=0, seed=69011, seed1=91567, seed2=17955, seed3=46503,cond=6); 
%dissertation (A=2.04,SD1=0,  SD2=1, SD3=2, MAG1=0.1, MAG2=0.1, 
MAG3=0.1,focabil=0, seed=92157, seed1=14577, seed2=98427, seed3=15011,cond=7); 
%dissertation (A=2.04,SD1=-2, SD2=-1,SD3=0, MAG1=0.1, MAG2=0.1, 
MAG3=0.1,focabil=0, seed=72905, seed1=39975, seed2=93093, seed3=46573,cond=8); 
 
%dissertation (A=2.72,SD1=-2, SD2=0, SD3=2, MAG1=0.1, MAG2=0.1, 
MAG3=0.1,focabil=0, seed=93969, seed1=40961, seed2=36857, seed3=91977,cond=9); 
%dissertation (A=2.72,SD1=-1, SD2=0, SD3=1, MAG1=0.1, MAG2=0.1, 
MAG3=0.1,focabil=0, seed=32363, seed1=91245, seed2=12765, seed3=61129,cond=10); 
%dissertation (A=2.72,SD1=0,  SD2=1, SD3=2, MAG1=0.1, MAG2=0.1, 
MAG3=0.1,focabil=0, seed=65795, seed1=20591, seed2=72295, seed3=27001,cond=11); 
%dissertation (A=2.72,SD1=-2, SD2=-1,SD3=0, MAG1=0.1, MAG2=0.1, 
MAG3=0.1,focabil=0, seed=62765, seed1=56349, seed2=42595, seed3=83473,cond=12); 
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%dissertation (A=1.36,SD1=-2, SD2=0, SD3=2, MAG1=0.25, MAG2=0.25, 
MAG3=0.25,focabil=0, seed=97265, seed1=85393, seed2=29515, 
seed3=28277,cond=13); 
%dissertation (A=1.36,SD1=-1, SD2=0, SD3=1, MAG1=0.25, MAG2=0.25, 
MAG3=0.25,focabil=0, seed=85689, seed1=92737, seed2=10281, 
seed3=42751,cond=14); 
%dissertation (A=1.36,SD1=0,  SD2=1, SD3=2, MAG1=0.25, MAG2=0.25, 
MAG3=0.25,focabil=0, seed=94305, seed1=96423, seed2=74103, 
seed3=51259,cond=15); 
%dissertation (A=1.36,SD1=-2, SD2=-1,SD3=0, MAG1=0.25, MAG2=0.25, 
MAG3=0.25,focabil=0, seed=78171, seed1=49127, seed2=55293, 
seed3=77341,cond=16); 
 
%dissertation (A=2.04,SD1=-2, SD2=0, SD3=2, MAG1=0.25, MAG2=0.25, 
MAG3=0.25,focabil=0, seed=67245, seed1=46473, seed2=82765, 
seed3=81263,cond=17); 
%dissertation (A=2.04,SD1=-1, SD2=0, SD3=1, MAG1=0.25, MAG2=0.25, 
MAG3=0.25,focabil=0, seed=17453, seed1=76393, seed2=30995, 
seed3=81647,cond=18); 
%dissertation (A=2.04,SD1=0,  SD2=1, SD3=2, MAG1=0.25, MAG2=0.25, 
MAG3=0.25,focabil=0, seed=31273, seed1=77233, seed2=48237, 
seed3=70997,cond=19); 
%dissertation (A=2.04,SD1=-2, SD2=-1,SD3=0, MAG1=0.25, MAG2=0.25, 
MAG3=0.25,focabil=0, seed=46901, seed1=19731, seed2=58731, 
seed3=13363,cond=20); 
 
%dissertation (A=2.72,SD1=-2, SD2=0, SD3=2, MAG1=0.25, MAG2=0.25, 
MAG3=0.25,focabil=0, seed=30883, seed1=67917, seed2=44407, 
seed3=84673,cond=21); 
%dissertation (A=2.72,SD1=-1, SD2=0, SD3=1, MAG1=0.25, MAG2=0.25, 
MAG3=0.25,focabil=0, seed=64809, seed1=58745, seed2=23219, 
seed3=39667,cond=22); 
%dissertation (A=2.72,SD1=0,  SD2=1, SD3=2, MAG1=0.25, MAG2=0.25, 
MAG3=0.25,focabil=0, seed=52267, seed1=69445, seed2=59533, 
seed3=18103,cond=23); 
%dissertation (A=2.72,SD1=-2, SD2=-1,SD3=0, MAG1=0.25, MAG2=0.25, 
MAG3=0.25,focabil=0, seed=82651, seed1=38005, seed2=14513, 
seed3=19885,cond=24); 
 
%dissertation (A=1.36,SD1=-2, SD2=0, SD3=2, MAG1=0.4,  MAG2=0.4,  
MAG3=0.4,focabil=0, seed=86385, seed1=18317, seed2=40027, seed3=20849,cond=25); 
%dissertation (A=1.36,SD1=-1, SD2=0, SD3=1, MAG1=0.4 , MAG2=0.4,  
MAG3=0.4,focabil=0, seed=15179, seed1=69179, seed2=92477, seed3=59931,cond=26); 
%dissertation (A=1.36,SD1=0,  SD2=1, SD3=2, MAG1=0.4,  MAG2=0.4,  
MAG3=0.4,focabil=0, seed=18663, seed1=56865, seed2=38867, seed3=94595,cond=27); 
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%dissertation (A=1.36,SD1=-2, SD2=-1,SD3=0, MAG1=0.4,  MAG2=0.4,  
MAG3=0.4,focabil=0, seed=37937, seed1=90229, seed2=83149, seed3=67689,cond=28); 
 
%dissertation (A=2.04,SD1=-2, SD2=0, SD3=2, MAG1=0.4,  MAG2=0.4,  
MAG3=0.4,focabil=0, seed=56873, seed1=20655, seed2=26575, seed3=74087,cond=29); 
%dissertation (A=2.04,SD1=-1, SD2=0, SD3=1, MAG1=0.4,  MAG2=0.4,  
MAG3=0.4,focabil=0, seed=53537, seed1=22987, seed2=87589, seed3=66969,cond=30); 
%dissertation (A=2.04,SD1=0,  SD2=1, SD3=2, MAG1=0.4,  MAG2=0.4,  
MAG3=0.4,focabil=0, seed=72695, seed1=56869, seed2=70659, seed3=81305,cond=31); 
%dissertation (A=2.04,SD1=-2, SD2=-1,SD3=0, MAG1=0.4,  MAG2=0.4,  
MAG3=0.4,focabil=0, seed=99547, seed1=22209, seed2=44819, seed3=17617,cond=32); 
 
%dissertation (A=2.72,SD1=-2, SD2=0, SD3=2, MAG1=0.4,  MAG2=0.4,  
MAG3=0.4,focabil=0, seed=25417, seed1=58727, seed2=35797, seed3=82271,cond=33); 
%dissertation (A=2.72,SD1=-1, SD2=0, SD3=1, MAG1=0.4,  MAG2=0.4,  
MAG3=0.4,focabil=0, seed=71341, seed1=93965, seed2=80059, seed3=56307,cond=34); 
%dissertation (A=2.72,SD1=0,  SD2=1, SD3=2, MAG1=0.4,  MAG2=0.4,  
MAG3=0.4,focabil=0, seed=30015, seed1=25331, seed2=44013, seed3=90655,cond=35); 
%dissertation (A=2.72,SD1=-2, SD2=-1,SD3=0, MAG1=0.4,  MAG2=0.4,  
MAG3=0.4,focabil=0, seed=51851, seed1=23495, seed2=71585, seed3=97735,cond=36); 
 
 
********************************Shift-Low DIF 
condition*********************; 
 
%dissertation (A=1.36, SD1=-2, SD2=0, SD3=2, MAG1=0.1, MAG2=0, 
MAG3=0,focabil=0, seed=50001, seed1=46557, seed2=58151, seed3=59193,cond=37); 
%dissertation (A=1.36, SD1=-1, SD2=0, SD3=1, MAG1=0.1, MAG2=0, 
MAG3=0,focabil=0, seed=81817, seed1=98947, seed2=86645, seed3=76797,cond=38); 
%dissertation (A=1.36, SD1=0,  SD2=1, SD3=2, MAG1=0.1, MAG2=0, 
MAG3=0,focabil=0, seed=44137, seed1=18059, seed2=40801, seed3=84637,cond=39); 
%dissertation (A=1.36, SD1=-2, SD2=-1,SD3=0, MAG1=0.1, MAG2=0, 
MAG3=0,focabil=0, seed=80287, seed1=69975, seed2=32427, seed3=61607,cond=40); 
 
%dissertation (A=2.04,SD1=-2, SD2=0, SD3=2, MAG1=0.1, MAG2=0, 
MAG3=0,focabil=0, seed=32081, seed1=34095, seed2=36207, seed3=39911,cond=41); 
%dissertation (A=2.04,SD1=-1, SD2=0, SD3=1, MAG1=0.1, MAG2=0, 
MAG3=0,focabil=0, seed=17983, seed1=12565, seed2=60045, seed3=15053,cond=42); 
%dissertation (A=2.04,SD1=0,  SD2=1, SD3=2, MAG1=0.1, MAG2=0, 
MAG3=0,focabil=0, seed=65255, seed1=85977, seed2=20847, seed3=31595,cond=43); 
%dissertation (A=2.04,SD1=-2, SD2=-1,SD3=0, MAG1=0.1, MAG2=0, 
MAG3=0,focabil=0, seed=42607, seed1=96067, seed2=12659, seed3=41135,cond=44); 
 
%dissertation (A=2.72,SD1=-2, SD2=0, SD3=2, MAG1=0.1, MAG2=0, 
MAG3=0,focabil=0, seed=48413, seed1=15475, seed2=84855, seed3=93161,cond=45); 
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%dissertation (A=2.72,SD1=-1, SD2=0, SD3=1, MAG1=0.1, MAG2=0, 
MAG3=0,focabil=0, seed=20969, seed1=96189, seed2=88267, seed3=45585,cond=46); 
%dissertation (A=2.72,SD1=0,  SD2=1, SD3=2, MAG1=0.1, MAG2=0, 
MAG3=0,focabil=0, seed=84115, seed1=16439, seed2=18425, seed3=63213,cond=47); 
%dissertation (A=2.72,SD1=-2, SD2=-1,SD3=0, MAG1=0.1, MAG2=0, 
MAG3=0,focabil=0, seed=92259, seed1=10367, seed2=30421, seed3=64835,cond=48); 
 
%dissertation (A=1.36,SD1=-2, SD2=0, SD3=2, MAG1=0.25, MAG2=0, 
MAG3=0,focabil=0, seed=70663, seed1=25555, seed2=33611, seed3=29841,cond=49); 
%dissertation (A=1.36,SD1=-1, SD2=0, SD3=1, MAG1=0.25, MAG2=0, 
MAG3=0,focabil=0, seed=19655, seed1=41151, seed2=47363, seed3=19661,cond=50); 
%dissertation (A=1.36,SD1=0,  SD2=1, SD3=2, MAG1=0.25, MAG2=0, 
MAG3=0,focabil=0, seed=84903, seed1=21069, seed2=81825, seed3=74917,cond=51); 
%dissertation (A=1.36,SD1=-2, SD2=-1,SD3=0, MAG1=0.25, MAG2=0, 
MAG3=0,focabil=0, seed=74461, seed1=90511, seed2=20285, seed3=44947,cond=52); 
 
%dissertation (A=2.04,SD1=-2, SD2=0, SD3=2, MAG1=0.25, MAG2=0, 
MAG3=0,focabil=0, seed=64161, seed1=15227, seed2=19509, seed3=44919,cond=53); 
%dissertation (A=2.04,SD1=-1, SD2=0, SD3=1, MAG1=0.25, MAG2=0, 
MAG3=0,focabil=0, seed=82517, seed1=65855, seed2=76655, seed3=86679,cond=54); 
%dissertation (A=2.04,SD1=0,  SD2=1, SD3=2, MAG1=0.25, MAG2=0, 
MAG3=0,focabil=0, seed=91291, seed1=88863, seed2=20103, seed3=53389,cond=55); 
%dissertation (A=2.04,SD1=-2, SD2=-1,SD3=0, MAG1=0.25, MAG2=0, 
MAG3=0,focabil=0, seed=30613, seed1=33703, seed2=18593, seed3=39615,cond=56); 
 
%dissertation (A=2.72,SD1=-2, SD2=0, SD3=2, MAG1=0.25, MAG2=0, 
MAG3=0,focabil=0, seed=25625, seed1=75601, seed2=28551, seed3=29975,cond=57); 
%dissertation (A=2.72,SD1=-1, SD2=0, SD3=1, MAG1=0.25, MAG2=0, 
MAG3=0,focabil=0, seed=12777, seed1=77919, seed2=34693, seed3=96909,cond=58); 
%dissertation (A=2.72,SD1=0,  SD2=1, SD3=2, MAG1=0.25, MAG2=0, 
MAG3=0,focabil=0, seed=35509, seed1=36103, seed2=38917, seed3=85963,cond=59); 
%dissertation (A=2.72,SD1=-2, SD2=-1,SD3=0, MAG1=0.25, MAG2=0, 
MAG3=0,focabil=0, seed=58629, seed1=99505, seed2=60697, seed3=77775,cond=60); 
 
%dissertation (A=1.36,SD1=-2, SD2=0, SD3=2, MAG1=0.4,  MAG2=0,  
MAG3=0,focabil=0, seed=56941, seed1=32307, seed2=54613, seed3=16379,cond=61); 
%dissertation (A=1.36,SD1=-1, SD2=0, SD3=1, MAG1=0.4 , MAG2=0,  
MAG3=0,focabil=0, seed=64951, seed1=55157, seed2=40719, seed3=90707,cond=62); 
%dissertation (A=1.36,SD1=0,  SD2=1, SD3=2, MAG1=0.4,  MAG2=0,  
MAG3=0,focabil=0, seed=98253, seed1=95725, seed2=94953, seed3=22851,cond=63); 
%dissertation (A=1.36,SD1=-2, SD2=-1,SD3=0, MAG1=0.4,  MAG2=0,  
MAG3=0,focabil=0, seed=42791, seed1=73211, seed2=48501, seed3=90449,cond=64); 
 
%dissertation (A=2.04,SD1=-2, SD2=0, SD3=2, MAG1=0.4,  MAG2=0,  
MAG3=0,focabil=0, seed=59583, seed1=97809, seed2=45709, seed3=87338,cond=65); 
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%dissertation (A=2.04,SD1=-1, SD2=0, SD3=1, MAG1=0.4,  MAG2=0,  
MAG3=0,focabil=0, seed=57491, seed1=73115, seed2=18629, seed3=90725,cond=66); 
%dissertation (A=2.04,SD1=0,  SD2=1, SD3=2, MAG1=0.4,  MAG2=0,  
MAG3=0,focabil=0, seed=38935, seed1=96773, seed2=16631, seed3=30405,cond=67); 
%dissertation (A=2.04,SD1=-2, SD2=-1,SD3=0, MAG1=0.4,  MAG2=0,  
MAG3=0,focabil=0, seed=21581, seed1=21457, seed2=16153, seed3=78919,cond=68); 
 
%dissertation (A=2.72,SD1=-2, SD2=0, SD3=2, MAG1=0.4,  MAG2=0,  
MAG3=0,focabil=0, seed=37169, seed1=50001, seed2=91227, seed3=44657,cond=69); 
%dissertation (A=2.72,SD1=-1, SD2=0, SD3=1, MAG1=0.4,  MAG2=0,  
MAG3=0,focabil=0, seed=43937, seed1=21885, seed2=46515, seed3=37449,cond=70); 
%dissertation (A=2.72,SD1=0,  SD2=1, SD3=2, MAG1=0.4,  MAG2=0,  
MAG3=0,focabil=0, seed=81899, seed1=10493, seed2=68379, seed3=18039,cond=71); 
%dissertation (A=2.72,SD1=-2, SD2=-1,SD3=0, MAG1=0.4,  MAG2=0,  
MAG3=0,focabil=0, seed=33309, seed1=16705, seed2=35101, seed3=81953,cond=72); 
 
********************************Shift-High DIF 
condition*********************; 
 
%dissertation (A=1.36, SD1=-2, SD2=0, SD3=2, MAG1=0, MAG2=0, 
MAG3=0.1,focabil=0, seed=21199, seed1=84979, seed2=66999, seed3=78095,cond=73); 
%dissertation (A=1.36, SD1=-1, SD2=0, SD3=1, MAG1=0, MAG2=0, 
MAG3=0.1,focabil=0, seed=70331, seed1=70225, seed2=94851, seed3=96131,cond=74); 
%dissertation (A=1.36, SD1=0,  SD2=1, SD3=2, MAG1=0, MAG2=0, 
MAG3=0.1,focabil=0, seed=63175, seed1=46891, seed2=64995, seed3=81223,cond=75); 
%dissertation (A=1.36, SD1=-2, SD2=-1,SD3=0, MAG1=0, MAG2=0, 
MAG3=0.1,focabil=0, seed=23167, seed1=33339, seed2=14367, seed3=68335,cond=76); 
 
%dissertation (A=2.04,SD1=-2, SD2=0, SD3=2, MAG1=0, MAG2=0, 
MAG3=0.1,focabil=0, seed=57047, seed1=17403, seed2=14349, seed3=42559,cond=77); 
%dissertation (A=2.04,SD1=-1, SD2=0, SD3=1, MAG1=0, MAG2=0, 
MAG3=0.1,focabil=0, seed=46949, seed1=83197, seed2=87025, seed3=20795,cond=78); 
%dissertation (A=2.04,SD1=0,  SD2=1, SD3=2, MAG1=0, MAG2=0, 
MAG3=0.1,focabil=0, seed=51111, seed1=39117, seed2=66321, seed3=31935,cond=79); 
%dissertation (A=2.04,SD1=-2, SD2=-1,SD3=0, MAG1=0, MAG2=0, 
MAG3=0.1,focabil=0, seed=47539, seed1=89303, seed2=92431, seed3=46583,cond=80); 
 
%dissertation (A=2.72,SD1=-2, SD2=0, SD3=2, MAG1=0, MAG2=0, 
MAG3=0.1,focabil=0, seed=38391, seed1=70765, seed2=60627, seed3=61337,cond=81); 
%dissertation (A=2.72,SD1=-1, SD2=0, SD3=1, MAG1=0, MAG2=0, 
MAG3=0.1,focabil=0, seed=98275, seed1=49323, seed2=87637, seed3=53381,cond=82); 
%dissertation (A=2.72,SD1=0,  SD2=1, SD3=2, MAG1=0, MAG2=0, 
MAG3=0.1,focabil=0, seed=10119, seed1=74211, seed2=27889, seed3=53363,cond=83); 
%dissertation (A=2.72,SD1=-2, SD2=-1,SD3=0, MAG1=0, MAG2=0, 
MAG3=0.1,focabil=0, seed=81973, seed1=51281, seed2=96783, seed3=14267,cond=84); 
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%dissertation (A=1.36,SD1=-2, SD2=0, SD3=2, MAG1=0, MAG2=0, 
MAG3=0.25,focabil=0, seed=38329, seed1=38351, seed2=41575, 
seed3=28609,cond=85); 
%dissertation (A=1.36,SD1=-1, SD2=0, SD3=1, MAG1=0, MAG2=0, 
MAG3=0.25,focabil=0, seed=79401, seed1=65831, seed2=16275, 
seed3=58353,cond=86); 
%dissertation (A=1.36,SD1=0,  SD2=1, SD3=2, MAG1=0, MAG2=0, 
MAG3=0.25,focabil=0, seed=44167, seed1=66523, seed2=15059, 
seed3=45021,cond=87); 
%dissertation (A=1.36,SD1=-2, SD2=-1,SD3=0, MAG1=0, MAG2=0, 
MAG3=0.25,focabil=0, seed=81959, seed1=20979, seed2=89917, 
seed3=63445,cond=88); 
 
%dissertation (A=2.04,SD1=-2, SD2=0, SD3=2, MAG1=0, MAG2=0, 
MAG3=0.25,focabil=0, seed=84067, seed1=37949, seed2=84463, 
seed3=17937,cond=89); 
%dissertation (A=2.04,SD1=-1, SD2=0, SD3=1, MAG1=0, MAG2=0, 
MAG3=0.25,focabil=0, seed=64297, seed1=57015, seed2=10573, 
seed3=72163,cond=90); 
%dissertation (A=2.04,SD1=0,  SD2=1, SD3=2, MAG1=0, MAG2=0, 
MAG3=0.25,focabil=0, seed=38857, seed1=12143, seed2=65651, 
seed3=86355,cond=91); 
%dissertation (A=2.04,SD1=-2, SD2=-1,SD3=0, MAG1=0, MAG2=0, 
MAG3=0.25,focabil=0, seed=44133, seed1=45799, seed2=21999, 
seed3=24413,cond=92); 
 
%dissertation (A=2.72,SD1=-2, SD2=0, SD3=2, MAG1=0, MAG2=0, 
MAG3=0.25,focabil=0, seed=24813, seed1=37621, seed2=15665, 
seed3=17361,cond=93); 
%dissertation (A=2.72,SD1=-1, SD2=0, SD3=1, MAG1=0, MAG2=0, 
MAG3=0.25,focabil=0, seed=16487, seed1=39147, seed2=61023, 
seed3=60563,cond=94); 
%dissertation (A=2.72,SD1=0,  SD2=1, SD3=2, MAG1=0, MAG2=0, 
MAG3=0.25,focabil=0, seed=59089, seed1=15765, seed2=53115, 
seed3=66499,cond=95); 
%dissertation (A=2.72, SD1=-2, SD2=-1,SD3=0, MAG1=0, MAG2=0, 
MAG3=0.25,focabil=0, seed=11977, seed1=92237, seed2=92063, 
seed3=33941,cond=96); 
 
%dissertation (A=1.36,SD1=-2, SD2=0, SD3=2, MAG1=0,  MAG2=0,  
MAG3=0.4,focabil=0, seed=16815, seed1=76463, seed2=81249, seed3=46609,cond=97); 
%dissertation (A=1.36,SD1=-1, SD2=0, SD3=1, MAG1=0 , MAG2=0,  
MAG3=0.4),focabil=0, seed=64535, seed1=62825, seed2=24369, 
seed3=83035,cond=98); 
%dissertation (A=1.36,SD1=0,  SD2=1, SD3=2, MAG1=0,  MAG2=0,  
MAG3=0.4,focabil=0, seed=12151, seed1=43997, seed2=47075, seed3=15035,cond=99); 
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%dissertation (A=1.36,SD1=-2, SD2=-1,SD3=0, MAG1=0,  MAG2=0,  
MAG3=0.4,focabil=0, seed=97161, seed1=62757, seed2=71945, 
seed3=25549,cond=100); 
 
%dissertation (A=2.04,SD1=-2, SD2=0, SD3=2, MAG1=0,  MAG2=0,  
MAG3=0.4,focabil=0, seed=26445, seed1=21361, seed2=83991, 
seed3=32305,cond=101); 
%dissertation (A=2.04,SD1=-1, SD2=0, SD3=1, MAG1=0,  MAG2=0,  
MAG3=0.4,focabil=0, seed=92351, seed1=83765, seed2=32989, 
seed3=26759,cond=102); 
%dissertation (A=2.04,SD1=0,  SD2=1, SD3=2, MAG1=0,  MAG2=0,  
MAG3=0.4,focabil=0, seed=73823, seed1=20801, seed2=41035, 
seed3=71013,cond=103); 
%dissertation (A=2.04,SD1=-2, SD2=-1,SD3=0, MAG1=0,  MAG2=0,  
MAG3=0.4,focabil=0, seed=60397, seed1=34537, seed2=31335, 
seed3=88815,cond=104); 
 
%dissertation (A=2.72,SD1=-2, SD2=0, SD3=2, MAG1=0,  MAG2=0,  
MAG3=0.4,focabil=0, seed=17869, seed1=49071, seed2=73923, 
seed3=15263,cond=105); 
%dissertation (A=2.72,SD1=-1, SD2=0, SD3=1, MAG1=0,  MAG2=0,  
MAG3=0.4,focabil=0, seed=18611, seed1=29789, seed2=62570, 
seed3=42865,cond=106); 
%dissertation (A=2.72,SD1=0,  SD2=1, SD3=2, MAG1=0,  MAG2=0,  
MAG3=0.4,focabil=0, seed=55657, seed1=26113, seed2=25651, 
seed3=86367,cond=107); 
%dissertation (A=2.72,SD1=-2, SD2=-1,SD3=0, MAG1=0,  MAG2=0,  
MAG3=0.4,focabil=0, seed=36693, seed1=27195, seed2=56891, 
seed3=97473,cond=108); 
 
********************************Balanced DIF 
condition*********************; 
 
%dissertation (A=1.36, SD1=-2, SD2=0, SD3=2, MAG1=0.1, MAG2=0, MAG3=-
0.1,focabil=0, seed=16489, seed1=16553, seed2=35083, seed3=18735,cond=109); 
%dissertation (A=1.36, SD1=-1, SD2=0, SD3=1, MAG1=0.1, MAG2=0, MAG3=-
0.1,focabil=0, seed=85205, seed1=26123, seed2=45349, seed3=29891,cond=110); 
%dissertation (A=1.36, SD1=0,  SD2=1, SD3=2, MAG1=0.1, MAG2=0, MAG3=-
0.1,focabil=0, seed=14361, seed1=99447, seed2=83325, seed3=71899,cond=111); 
%dissertation (A=1.36, SD1=-2, SD2=-1,SD3=0, MAG1=0.1, MAG2=0, MAG3=-
0.1,focabil=0, seed=74353, seed1=45393, seed2=48223, seed3=17247,cond=112); 
 
%dissertation (A=2.04,SD1=-2, SD2=0, SD3=2, MAG1=0.1, MAG2=0, MAG3=-
0.1,focabil=0, seed=51125, seed1=39339, seed2=31601, seed3=19687,cond=113); 
%dissertation (A=2.04,SD1=-1, SD2=0, SD3=1, MAG1=0.1, MAG2=0, MAG3=-
0.1,focabil=0, seed=18749, seed1=68607, seed2=25471, seed3=67107,cond=114); 
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%dissertation (A=2.04,SD1=0,  SD2=1, SD3=2, MAG1=0.1, MAG2=0, MAG3=-
0.1,focabil=0, seed=11163, seed1=78675, seed2=17095, seed3=45233,cond=115); 
%dissertation (A=2.04,SD1=-2, SD2=-1,SD3=0, MAG1=0.1, MAG2=0, MAG3=-
0.1,focabil=0, seed=20203, seed1=15475, seed2=41001, seed3=83531,cond=116); 
 
%dissertation (A=2.72,SD1=-2, SD2=0, SD3=2, MAG1=0.1, MAG2=0, MAG3=-
0.1,focabil=0, seed=28865, seed1=48373, seed2=35931, seed3=68645,cond=117); 
%dissertation (A=2.72,SD1=-1, SD2=0, SD3=1, MAG1=0.1, MAG2=0, MAG3=-
0.1,focabil=0, seed=73817, seed1=23153, seed2=59649, seed3=46751,cond=118); 
%dissertation (A=2.72,SD1=0,  SD2=1, SD3=2, MAG1=0.1, MAG2=0, MAG3=-
0.1,focabil=0, seed=68995, seed1=47689, seed2=79375, seed3=68833,cond=119); 
%dissertation (A=2.72,SD1=-2, SD2=-1,SD3=0, MAG1=0.1, MAG2=0, MAG3=-
0.1,focabil=0, seed=41867, seed1=89203, seed2=93911, seed3=88525,cond=120); 
 
%dissertation (A=1.36,SD1=-2, SD2=0, SD3=2, MAG1=0.25, MAG2=0, MAG3=-
0.25,focabil=0, seed=66345, seed1=81651, seed2=84081, seed3=34405,cond=121); 
%dissertation (A=1.36,SD1=-1, SD2=0, SD3=1, MAG1=0.25, MAG2=0, MAG3=-
0.25,focabil=0, seed=17639, seed1=34327, seed2=80377, seed3=54339,cond=122); 
%dissertation (A=1.36,SD1=0,  SD2=1, SD3=2, MAG1=0.25, MAG2=0, MAG3=-
0.25,focabil=0, seed=12515, seed1=22923, seed2=14777, seed3=57375,cond=123); 
%dissertation (A=1.36,SD1=-2, SD2=-1,SD3=0, MAG1=0.25, MAG2=0, MAG3=-
0.25,focabil=0, seed=15957, seed1=70625, seed2=32523, seed3=30429,cond=124); 
 
%dissertation (A=2.04,SD1=-2, SD2=0, SD3=2, MAG1=0.25, MAG2=0, MAG3=-
0.25,focabil=0, seed=56087, seed1=14951, seed2=71795, seed3=43805,cond=125); 
%dissertation (A=2.04,SD1=-1, SD2=0, SD3=1, MAG1=0.25, MAG2=0, MAG3=-
0.25,focabil=0, seed=50245, seed1=74301, seed2=25299, seed3=94617,cond=126); 
%dissertation (A=2.04,SD1=0,  SD2=1, SD3=2, MAG1=0.25, MAG2=0, MAG3=-
0.25,focabil=0, seed=52689, seed1=35909, seed2=58861, seed3=81073,cond=127); 
%dissertation (A=2.04,SD1=-2, SD2=-1,SD3=0, MAG1=0.25, MAG2=0, MAG3=-
0.25,focabil=0, seed=56613, seed1=98227, seed2=12133, seed3=52799,cond=128); 
 
%dissertation (A=2.72,SD1=-2, SD2=0, SD3=2, MAG1=0.25, MAG2=0, MAG3=-
0.25,focabil=0, seed=32261, seed1=78547, seed2=82163, seed3=72811,cond=129); 
%dissertation (A=2.72,SD1=-1, SD2=0, SD3=1, MAG1=0.25, MAG2=0, MAG3=-
0.25,focabil=0, seed=41961, seed1=70735, seed2=98931, seed3=35165,cond=130); 
%dissertation (A=2.72,SD1=0,  SD2=1, SD3=2, MAG1=0.25, MAG2=0, MAG3=-
0.25,focabil=0, seed=28725, seed1=51805, seed2=85001, seed3=60383,cond=131); 
%dissertation (A=2.72,SD1=-2, SD2=-1,SD3=0, MAG1=0.25, MAG2=0, MAG3=-
0.25,focabil=0, seed=51275, seed1=34971, seed2=84387, seed3=99533,cond=132); 
 
%dissertation (A=1.36,SD1=-2, SD2=0, SD3=2, MAG1=0.4,  MAG2=0,  MAG3=-
0.4,focabil=0, seed=91511, seed1=78095, seed2=14645, seed3=28225,cond=133); 
%dissertation (A=1.36,SD1=-1, SD2=0, SD3=1, MAG1=0.4 , MAG2=0,  MAG3=-
0.4,focabil=0, seed=92277, seed1=60859, seed2=13261, seed3=22717,cond=134); 
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%dissertation (A=1.36,SD1=0,  SD2=1, SD3=2, MAG1=0.4,  MAG2=0,  MAG3=-
0.4,focabil=0, seed=44437, seed1=25499, seed2=98289, seed3=85653,cond=135); 
%dissertation (A=1.36,SD1=-2, SD2=-1,SD3=0, MAG1=0.4,  MAG2=0,  MAG3=-
0.4,focabil=0, seed=50501, seed1=21597, seed2=34191, seed3=92325,cond=136); 
 
%dissertation (A=2.04,SD1=-2, SD2=0, SD3=2, MAG1=0.4,  MAG2=0,  MAG3=-
0.4,focabil=0, seed=23541, seed1=34925, seed2=70925, seed3=85065,cond=137); 
%dissertation (A=2.04,SD1=-1, SD2=0, SD3=1, MAG1=0.4,  MAG2=0,  MAG3=-
0.4,focabil=0, seed=907251, seed1=75567, seed2=50585, seed3=19585,cond=138); 
%dissertation (A=2.04,SD1=0,  SD2=1, SD3=2, MAG1=0.4,  MAG2=0,  MAG3=-
0.4,focabil=0, seed=164081, seed1=156641, seed2=950121, seed3=643641,cond=139); 
%dissertation (A=2.04,SD1=-2, SD2=-1,SD3=0, MAG1=0.4,  MAG2=0,  MAG3=-
0.4,focabil=0, seed=304051, seed1=574911, seed2=731151, seed3=186291,cond=140); 
 
%dissertation (A=2.72,SD1=-2, SD2=0, SD3=2, MAG1=0.4,  MAG2=0,  MAG3=-
0.4,focabil=0, seed=316241, seed1=389351, seed2=967731, seed3=166311,cond=141); 
%dissertation (A=2.72,SD1=-1, SD2=0, SD3=1, MAG1=0.4,  MAG2=0,  MAG3=-
0.4,focabil=0, seed=190661, seed1=744261, seed2=139311, seed3=789191,cond=142); 
%dissertation (A=2.72,SD1=0,  SD2=1, SD3=2, MAG1=0.4,  MAG2=0,  MAG3=-
0.4,focabil=0, seed=215811, seed1=214571, seed2=161531, seed3=422381,cond=143); 
%dissertation (A=2.72,SD1=-2, SD2=-1,SD3=0, MAG1=0.4,  MAG2=0,  MAG3=-
0.4,focabil=0, seed=913401, seed1=74301, seed2=446571, seed3=556121,cond=144); 
 
 

********************************TYPE I 
ERROR***************************; 

%dissertation (A=1.36, SD1=-2, SD2=0, SD3=2, MAG1=0, MAG2=0, 
MAG3=0,focabil=0, seed=275041, seed1=653901, seed2=500011, seed3=912271, 
cond=145); 
%dissertation (A=1.36, SD1=-1, SD2=0, SD3=1,MAG1=0, MAG2=0, 
MAG3=0,focabil=0, seed=465151, seed1=374491, seed2=115081, seed3=371691, 
cond=146); 
%dissertation (A=1.36, SD1=0,  SD2=1, SD3=2,MAG1=0, MAG2=0, 
MAG3=0,focabil=0, seed=218851, seed1=824861, seed2=637981, 
seed3=309861,cond=147); 
%dissertation (A=1.36, SD1=-2, SD2=-1,SD3=0, MAG1=0, MAG2=0, 
MAG3=0,focabil=0, seed=329911, seed1=976561, seed2=439371, 
seed3=603361,cond=148); 
 
%dissertation (A=2.04,SD1=-2, SD2=0, SD3=2, MAG1=0, MAG2=0, 
MAG3=0,focabil=0, seed=636211, seed1=180391, seed2=856361, 
seed3=796261,cond=149); 
%dissertation (A=2.04,SD1=-1, SD2=0, SD3=1,MAG1=0, MAG2=0, MAG3=0, 
focabil=0, seed=683791, seed1=358111, seed2=674121, seed3=522101,cond=150); 
%dissertation (A=2.04,SD1=0,  SD2=1, SD3=2,MAG1=0, MAG2=0, MAG3=0, 
focabil=0, seed=351011, seed1=819531, seed2=818991, seed3=104931,cond=151); 
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%dissertation (A=2.04,SD1=-2, SD2=-1,SD3=0,MAG1=0, MAG2=0, MAG3=0, 
focabil=0, seed=202061, seed1=350061, seed2=839461, seed3=167031,cond=152); 
 
%dissertation (A=2.72,SD1=-2, SD2=0, SD3=2,MAG1=0, MAG2=0, 
MAG3=0,focabil=0, seed=333091, seed1=194741, seed2=763841, 
seed3=642021,cond=153); 
%dissertation (A=2.72,SD1=-1, SD2=0, SD3=1,MAG1=0, MAG2=0, MAG3=0, 
focabil=0, seed=180021, seed1=124261, seed2=119031, seed3=332781,cond=154); 
%dissertation (A=2.72,SD1=0,  SD2=1, SD3=2, MAG1=0, MAG2=0, 
MAG3=0,focabil=0, seed=669991, seed1=780951, seed2=578021, 
seed3=407421,cond=155); 
%dissertation (A=2.72,SD1=-2, SD2=-1,SD3=0, MAG1=0, MAG2=0, 
MAG3=0,focabil=0, seed=152241, seed1=381401, seed2=21191, 
seed3=849791,cond=156); 
 
%dissertation (A=1.36,SD1=-2, SD2=0, SD3=2,MAG1=0, MAG2=0, MAG3=0, 
focabil=-.5, seed=303621, seed1=702251, seed2=948511, seed3=961311,cond=157); 
%dissertation (A=1.36,SD1=-1, SD2=0, SD3=1,MAG1=0, MAG2=0, MAG3=0, 
focabil=-.5, seed=848461, seed1=649951, seed2=812231, seed3=703311,cond=158); 
%dissertation (A=1.36,SD1=0,  SD2=1, SD3=2,MAG1=0, MAG2=0, MAG3=0, 
focabil=-.5, seed=631751, seed1=468911, seed2=987821, seed3=329061,cond=159); 
%dissertation (A=1.36,SD1=-2, SD2=-1,SD3=0, MAG1=0, MAG2=0, 
MAG3=0,focabil=-.5, seed=143671, seed1=683351, seed2=164861, 
seed3=112211,cond=160); 
 
%dissertation (A=2.04,SD1=-2, SD2=0, SD3=2, MAG1=0, MAG2=0, 
MAG3=0,focabil=-.5, seed=316621, seed1=333391, seed2=839741, 
seed3=156561,cond=161); 
%dissertation (A=2.04,SD1=-1, SD2=0, SD3=1, MAG1=0, MAG2=0, 
MAG3=0,focabil=-.5, seed=155201, seed1=141531, seed2=204921, 
seed3=935261,cond=162); 
%dissertation (A=2.04,SD1=0,  SD2=1, SD3=2, MAG1=0, MAG2=0, 
MAG3=0,focabil=-.5, seed=859001, seed1=237921, seed2=231671, 
seed3=474981,cond=163); 
%dissertation (A=2.04,SD1=-2, SD2=-1,SD3=0, MAG1=0, MAG2=0, 
MAG3=0,focabil=-.5, seed=236321, seed1=174031, seed2=143491, 
seed3=425591,cond=164); 
 
%dissertation (A=2.72,SD1=-2, SD2=0, SD3=2, MAG1=0, MAG2=0, 
MAG3=0,focabil=-.5, seed=870251, seed1=207951, seed2=439721, 
seed3=570471,cond=165); 
%dissertation (A=2.72,SD1=-1, SD2=0, SD3=1, MAG1=0, MAG2=0, 
MAG3=0,focabil=-.5, seed=831971, seed1=120501, seed2=298201, 
seed3=265041,cond=166); 
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%dissertation (A=2.72,SD1=0,  SD2=1, SD3=2, MAG1=0, MAG2=0, 
MAG3=0,focabil=-.5, seed=663211, seed1=319351, seed2=469491, 
seed3=993241,cond=167); 
%dissertation (A=2.72,SD1=-2, SD2=-1,SD3=0, MAG1=0, MAG2=0, 
MAG3=0,focabil=-.5, seed=166941, seed1=511111, seed2=839441, 
seed3=729581,cond=168); 
 
%dissertation (A=1.36,SD1=-2, SD2=0, SD3=2, MAG1=0, MAG2=0, 
MAG3=0,focabil=-1, seed=992541, seed1=465831, seed2=424161, 
seed3=859221,cond=169); 
%dissertation (A=1.36,SD1=-1, SD2=0, SD3=1, MAG1=0, MAG2=0, 
MAG3=0,focabil=-1, seed=893031, seed1=240101, seed2=174081, 
seed3=924311,cond=170); 
%dissertation (A=1.36,SD1=0,  SD2=1, SD3=2, MAG1=0, MAG2=0, 
MAG3=0,focabil=-1, seed=475391, seed1=135741, seed2=135741, 
seed3=154181,cond=171); 
%dissertation (A=1.36,SD1=-2, SD2=-1,SD3=0, MAG1=0, MAG2=0, 
MAG3=0,focabil=-1, seed=319261, seed1=299921, seed2=606271, 
seed3=613371,cond=172); 
 
%dissertation (A=2.04,SD1=-2, SD2=0, SD3=2, MAG1=0, MAG2=0, 
MAG3=0,focabil=-1, seed=533811, seed1=383911, seed2=707651, 
seed3=253881,cond=173); 
%dissertation (A=2.04,SD1=-1, SD2=0, SD3=1, MAG1=0, MAG2=0, 
MAG3=0,focabil=-1, seed=144221, seed1=493231, seed2=876371, 
seed3=919621,cond=174); 
%dissertation (A=2.04,SD1=0,  SD2=1, SD3=2, MAG1=0, MAG2=0, 
MAG3=0,focabil=-1, seed=533631, seed1=826741, seed2=789801, 
seed3=982751,cond=175); 
%dissertation (A=2.04,SD1=-2, SD2=-1,SD3=0, MAG1=0, MAG2=0, 
MAG3=0,focabil=-1, seed=954521, seed1=101191, seed2=742111, 
seed3=278891,cond=176); 
 
%dissertation (A=2.72,SD1=-2, SD2=0, SD3=2, focabil=-1, MAG1=0, MAG2=0, 
MAG3=0,seed=897281 , seed1=967831, seed2=417441, seed3=142671,cond=177); 
%dissertation (A=2.72,SD1=-1, SD2=0, SD3=1, focabil=-1, MAG1=0, MAG2=0, 
MAG3=0,seed=270221, seed1=819731, seed2=512841, seed3=337321,cond=178); 
%dissertation (A=2.72,SD1=0,  SD2=1, SD3=2, focabil=-1, MAG1=0, MAG2=0, 
MAG3=0,seed=896321, seed1=415751, seed2=286091, seed3=199241,cond=179); 
%dissertation (A=2.72,SD1=-2, SD2=-1,SD3=0, focabil=-1, MAG1=0, MAG2=0, 
MAG3=0,seed=583531, seed1=383291, seed2=5469001, seed3=383511,cond=180); 
 
proc sort data=ALLREPS; by rep; 
data typeIgmh; set allreps; by rep; 
 
if R20gmhp ne . and R20gmhp lt .05 then sig20gmh=1; 
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else if R20gmhp ge .05 then sig20gmh=0; 
 
if R20mantelprob ne . and R20mantelprob lt .05 then sig20man=1; 
else if R20mantelprob ge .05 then sig20man=0; 
 
if probchisq ne . and probchisq lt .05 then sig20LR=1; 
else if probchisq ge .05 then sig20LR=0; 
 
ods html body= 'e:\Dissertation\Diss Code\Results\outputdisslog.xls'; 
Title 'DIF DETECTION'; 
proc sort data=typeIgmh; by cond; 
 
proc freq; tables sig20gmh sig20man sig20LR; by cond; 
run; 
 
ods html close; 
 
 
 
 

Note. The scaling constant (D=1.7) must be multiplied to the discrimination parameters 

before being passed to the IRTGEN macro program (Whittaker et al, 2003).
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APPENDIX C 

Relevant Literature Overview 

Study 
Generating 
Model(s) 

DIF detection 
methods 

Factors 
Examined  Findings 

Clauser et al. 
(1991) 

 3PLM  MH  *Discrimination 
Difficulty 
Ability 
distribution 

Items more likely 
to be flagged for 
DIF as the DIF 
magnitude 
increased 
MH most effective 
with groups from 
equal ability 
distributions 

Donoghue & 
Allen (1993) 

3 PLM  MH  DIF magnitude 
Ability 
distribution 
Pooling (thin vs 
thick) 

Very easy items 
more difficult for 
focal group 
Hard items easier 
for reference 
group 
For easy items, 
increasing the 
discrimination in 
the studied item 
made between 
group differences 
larger, resulting in 
better DIF 
detection 

Sample size 
(250 & 500) 
Degree of 
model‐fit 

For very easy 
items, LR fit data 
well over all but 
the very lowest 
part of trait scale 
For very difficult 
items, LR misfit 
was more 
pronounced 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dichotomous 

Rogers & 
Swaminathan 
(1993) 

2 PLM 
3 PLM 

MH 
LR 

 
Discrimination 
Difficulty 
 

Items of moderate 
difficulty and high 
discrimination, 
more easily 
detected for DIF 
Items of high 
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Study 
Generating 
Model(s) 

DIF detection 
methods 

Factors 
Examined  Findings 

difficulty, MH & LR 
had almost 
identical detection 
rates 

Hidalgo & 
Lopez‐Pina 
(2004) 

3 PLM  MH 
Modified MH 
LR 

Discrimination 
Difficulty 
 

DIF detection rates 
for all methods 
increased, as 
magnitude of 
uniform & 
nonuniform DIF 
increased 
 
 
 
LR had better DIF 
detection rates for 
symmetrical 
nonuniform 
conditions 
Overall, all 3 
methods 
performed 
similarly 

Zwick et al. 
(1993) 

PCM  Mantel  GMH  Ability 
distribution 
Difficulty 
DIF patterns 
DIF magnitude 

For most DIF 
analyses, Mantel is 
better method to 
use 

French & 
Miller (1996) 

GPCM  LR  Sample Size 
(500 & 2,000) 
Coding 
Schemes 
4 Conditions 

Continuation ratio 
logits model & 
cumulative logits 
model better for 
detecting uniform 
and nonuniform 
DIF than adjacent 
categories model 
Overall, with the 
large sample size, 
LR is a good choice 
for polytomous DIF 
detection 

Wang & Su 
(2004b) 

PCM 
Graded 
Response 
Model 
(GRM) 

Mantel 
GMH 

Test 
purification 
Ability 
distribution 
Test length 
% DIF 
DIF patterns 
ASA 

Mantel & GMH 
more powerful 
under the constant 
and constant‐
item/balanced test 
pattern 

 
 
 
 
 
 
 
 
 
Polytomous 

Su & Wang  PCM   Mantel  Ability  Under constant 



116 

 

Study 
Generating 
Model(s) 

DIF detection 
methods 

Factors 
Examined  Findings 

(2005)  GRM  GMH 
LDFA 

distribution 
DIF pattern 
DIF magnitude 
%DIF 

pattern all three 
methods begin to 
lose control over 
Type I error 
Under the 
balanced pattern, 
all three methods 
had good control 
over Type I error 
Under the shift‐
high and shift‐low 
patterns, the 
average power of 
the three methods 
to detect DIF was 
roughly the same. 
Under the 
constant‐
item/balanced test 
pattern, the 
average power of 
the Mantel and 
LDFA methods was 
similar but higher 
than that of the 
GMH  
The higher the 
percentage of DIF 
items, the more 
inflated the 
average Type I 
error became 

Kristjansson 
et al. (2005) 

GPCM  Mantel 
GMH 
LDFA 
UCLOLR 

Presence & 
type of DIF 
Discrimination 
Sample size 
ratio 
Skewness of 
ability 
distribution 

None of the four 
DIF detection 
procedures 
showed any 
significant 
departure from the 
nominal Type I 
error rate of 0.05 
All four procedures 
had excellent 
power (greater 
than 0.963) for 
detecting uniform 
DIF 
GMH and 
UCLOLR’s power to 
detect uniform DIF 
was better when 
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Study 
Generating 
Model(s) 

DIF detection 
methods 

Factors 
Examined  Findings 

item  
discrimination was 
moderate or high 

*Only uniform DIF simulated 
 


	Recommended Citation
	Georgia State University
	Digital Archive @ GSU
	10-21-2009

	A Monte Carlo Study Investigating the Influence of Item Discrimination, Category Intersection Parameters, and Differential Item Functioning in Polytomous Items
	Carol Jenetha Thurman


