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Abstract 
 
The validity of a measurement instrument depends on the quality of the 
items included in the instrument. The overall aim was to compare meth-
ods for detecting and measuring differential item functioning, DIF, in 
order to find a suitable method for examining DIF in a dichotomously 
scored criterion-referenced licensing test. The methods were discussed 
with respect to whether they are parametric, the nature of the matching 
score, if they can handle dichotomously and polytomously scored items, 
if they can test and/or measure DIF, and if they can detect both uniform 
and non-uniform DIF. The methods were also discussed with respect to 
whether they could handle the cut-off score in particular and the sample 
size requirements. The results show that there is not one method that can 
be recommended because many of them rely on strong assumptions 
which need to be examined and fulfilled before they can be recom-
mended. It was recommended that an empirical study comparing the 
Mantel-Haenszel, logistic regression, log linear models and an IRT 
method is performed. Finally, the concluding remarks provide a discus-
sion of guidelines for what to do if an item displays DIF in a test. 
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1. Introduction 
 
In order to draw valid conclusions from an achievement test it is essential 
that the test is a valid measurement of what it is intended to measure. See 
e.g. Messick (1989) or Kane (2006) for a discussion of validity in tests 
and validation, i.e. the process of ensuring the validity in a test with re-
spect to the context it is used. A test is never better than the sum of its 
items; hence to identify problematic items through item analysis is of 
great importance. Item analysis includes using statistical techniques to 
examine the test takers’ performance on the items. One important part of 
the item analysis is to examine Differential Item Functioning, DIF, in 
the items. There exists several definitions of DIF but the following will 
be used in this report: 
 

 “DIF refers to differences in item functioning after groups have 
been matched with respect to ability or attribute that the item 
purportedly measures… DIF is an unexpected difference among 
groups of examinees who are supposed to be comparable with re-
spect to attribute measured by the item and the test on which it 
appears” (p.37) (Dorans & Holland, 1993). 

 
Angoff (1993) points out that an item which displays DIF has different 
statistical properties in different group settings when controlling for dif-
ferences in the abilities of the groups. It is therefore important to use 
representative samples in order to draw valid conclusions about DIF. 
Detection of DIF in items in a test is important regarding the quality of 
an assessment instrument since DIF can be described as the presence of 
nuisance dimensions intruding on the ability intended to measure 
(Ackerman, 1992). It is important to stress that DIF is an unexpected 
difference between two groups after matching on the underlying ability 
that the item is intended to measure. Note that DIF is synonymous with 
statistical bias, i.e. the under- or over-estimation of one or more parame-
ters in the statistical model (Camilli, 2006). 
 
Before proceeding, it is important to clarify one concept which has been 
used previously instead of DIF but now has another meaning; item bias 
(Scheuneman & Bleistein, 1997), and the related concept; item impact. 
A biased item displays DIF; however that is not sufficient for the item 
being biased. DIF is a statistical property of an item while item bias is 
more general and lies in the interpretation (Camilli & Shepard, 1994; 
Clauser & Mazor, 1998). An item is said to be biased when test takers 
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from one group are less likely to answer an item correctly than test takers 
of another group due to some characteristic of the item or the test situa-
tion that is not relevant to the purpose of the test. If a difference is ob-
served it does not mean that there exists measurement bias since it might 
be a real difference in ability (Camilli, 2006). For a discussion of item 
bias see e.g. Penfield & Camilli (2007). Item impact refers to when test 
takers from different groups have different probabilities of responding 
correctly to an item due to true differences in ability measured by the 
item (Dorans & Holland, 1993). Item impact can be measured through 
the proportion of test takers passing an item regardless of their total 
score. 
 
One of the major challenges in applying tests is to assure that the tests are 
fair (see e.g. Camilli, 2006; Gipps, 1994; Shephard, 1982, for a discus-
sion of fairness), in the sense that the most able test takers receive the 
best test scores. It is not enough to discover DIF items in order to claim 
unfairness of a test. How fair a test is depends on how the test is used. 
However, in order to make meaningful comparisons it is required that 
measurement equivalence holds between different groups of test takers. 
Since a test is never perfect, a test score can to some degree reflect other 
variables than those intended to be measured. This is a threat to the va-
lidity of inferences drawn from the test scores, which may lead us to con-
sider a test as biased against a group of test takers with certain character-
istics. Test bias refers to the systematic difference in total test score 
against a particular group (Camilli, 2006; Camilli & Shepard, 1994; 
Wonsuk, 2003). Note, a test free from test bias may contain item bias, if 
there are about the same amount of items that gives disadvantages to 
each of two groups they cancel each other out (Hong & Roznowski, 
2001). The potential bias in test scores for specific groups such as gender 
or ethnicity has drawn the attention of both the public and test develop-
ers to this matter. There have even been court decisions that have re-
stricted how specific tests for admission decisions should be used since 
there were evidence that the tests were biased against female and/or mi-
nority test takers (Linn & Drasgow, 1987). It is also important to stress 
that a test needs to be a valid measurement since in some DIF methods 
the total test score is used as a measure of a test takers ability (Ironson, 
1982). 
 
Since DIF analysis was put into light of the measurement industry there 
has been extensive research and method development for detecting DIF. 
To examine a measurement quality and its bias one can either use a 
judgmental and/or a statistical approach, where the latter approach al-
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ways should be used although the former approach might be handy be-
fore testing the items. The test taker group of interest is labeled the focal 
group (usually the minority group) and its performance on an item is 
compared with the reference group. In reality, there may be many pairs of 
focal and reference groups that DIF is analyzed within (Holland & 
Wainer, 1993). To detect DIF one can either use an external criterion 
separated from the test or an internal criterion within the test (Camilli, 
2006; Camilli & Shepard, 1994). In this report the focus will be on in-
ternal measure criteria within a test. It must be stressed that it is not 
enough to use a statistical test to detect DIF in an item. We also need to 
measure the size of DIF. 
 
 
1.1 Previous DIF studies 
 
Item bias research goes back almost a century starting with Alfred Binet 
in 1910 who removed some items from a test since it relied to heavy on 
factors such as scholastic exercise, attention, language (see e.g. Camilli 
(1993) or Camilli & Shephard, (1994) for details on historically devel-
opment of DIF research). Also, Angoff (1993) and Cole (1993) de-
scribed the history and development that has followed the emerging of 
methods for detecting DIF. More recently, Camilli (2006) have dis-
cussed DIF in the context of test fairness. 
 
There have been a number of reviews of methods to detect or measure 
DIF, see e.g. Berk (1982), Clauser & Mazor, (1998), Camilli & She-
phard (1994), Shephard, Camilli & Williams (1985), Holland & Wainer 
(1993), Millsap & Everson (1993), Camilli (2006) or Penfield & Camilli 
(2007). There have also been a number of model comparisons for detect-
ing or measuring the size of DIF (see e.g. Hidalgo & López-Pina, 2004; 
Rogers & Swaminathan, 1993; Wonsuk, 2003; Zumbo, 1999). This 
report is different from the others mentioned. The focus is on reviewing 
suitable methods to be use with a criterion-referenced licensing test and 
comparing them with each other and with respect to some chosen crite-
ria. This is conducted from a theoretical perspective. The main difference 
when using a criterion-referenced test as compared to a norm-referenced 
test is the use of a cut-off score, i.e. when a test taker is considered a mas-
ter or not. Methods which can handle the cutoff score are therefore of 
special interest here.  
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1.3. Limitations of the report 
 
DIF methods for use in test-lets, multiple measures, DIF in multiple 
groups (Kim, Cohen, & Park, 1995), and methods based on expert 
judgment were not discussed since this was beyond the scope of this re-
port. Further, methods for detecting predictive bias which can be found 
in educational or personnel selection contexts are not discussed because 
the test in focus here is not a selection test in the same sense as e.g. a 
scholastic aptitude test is. The early methods for detecting DIF, which 
rely on classical test theory (e.g. the delta-plot see Angoff (1993) for a 
summary) and ANOVA (Rudner, Getson, & Knight, 1980), correlation 
and reliability estimation methods are also excluded since they confound 
group difference in test performance on an item with the group differ-
ence on average ability. This means that items can be falsely identified as 
DIF items or items which have DIF are not detected. Camilli & 
Shephard (1994) and Shephard, Camilli & Williams (1985) emphasize 
that these methods are inaccurate and should never be used to make 
judgment about item bias. Further, Dorans & Holland (1993) provide 
some guidelines to some of these methods. This study only discusses the 
methods that have been applied to a larger extent. 
 
Specific methods for detecting DIF in polytomously scored items are not 
discussed although many of the dichotomously scored methods discussed 
can be extended to use for polytomously scored items. For example; lo-
gistic regression (Rogers & Swaminathan, 1993; Wang & Lane, 1996), 
the SIBTEST, Mantel-Haenszel test and all the IRT methods are meth-
ods that can be used or extended for this purpose. Methods such as the 
logistic discriminant function (Miller & Spray, 1993; Millsap & Ever-
son, 1993; Wang & Lane, 1996) can be used for dichotomously scored 
items but is particular useful for polytomously scored items are not in-
cluded here. Further, structural equation modeling which are especially 
useful for multi-group analysis (Fleishman, Spector, & Altman, 2002) 
are not included here. For a review of detecting DIF in polytomously 
scored items see e.g. Penfield & Camilli (2007). 
 
1.2 Aim 
 
The overall aim is to review and compare methods for detecting and 
measuring DIF in a dichotomously scored criterion-referenced licensing 
test which is one dimensional, as e.g. the Swedish theory driving-license 
test. Six criteria are chosen for this purpose and the methods are dis-
cussed with respect to them. The different criteria were; parametric or 
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nonparametric, the nature of the matching variable, if they can handle 
both dichotomously or polytomously scored items, if they can detect 
and/or measure size of DIF and if they can detect uniform or non-
uniform DIF. The methods are also discussed as to whether they can 
handle the cut-off score specifically. Finally sample size requirements are 
discussed. 
 
 
2. Method 
 
Several commonly used DIF methods will be described, compared and 
categorized in accordance to six criteria. These criteria have been chosen 
to fit the aim of this study. Some of the criteria have been used in other 
studies although the last criterion is unique for this study. The first crite-
rion is whether the methods are parametric or non-parametric, i.e. 
whether the model of the item is in focus or the data material is in focus. 
Within each of these two groups it is also possible to make a distinction 
between those methods which are contingency tables approaches and 
those who are not, however this was not used as a criterion. Note that 
both the non-parametric Mantel-Haenszel procedures and the parametric 
logistic regression are included in the contingency table approaches. The 
second criterion is whether the matching variable is based on an observed 
(e.g. total test score) or a latent variable. The first and second criteria are 
in line with Potenza & Dorans (1995) classification scheme. Although 
we are primarily interested in methods for dichotomously scored items, 
the third criterion is whether the method can handle or be extended for 
use with polytomously scored items. This criterion is included for the 
sake of illustrating flexibility and generalizability of the method. The 
fourth criterion is between if a DIF methods can measure the effect size 
of DIF and test DIF, i.e. measure and/or test DIF. This criterion is in-
cluded since the method shows complexity and flexibility if this criterion 
is fulfilled. 
 
The fifth criterion includes which kind of DIF the methods can handle; 
i.e. uniform and/or non-uniform DIF. An item displays uniform DIF if 
there is no interaction between ability level and group membership, i.e. 
the probability of answering an item correctly is greater for one group 
uniformly over all matched ability levels. An item displays non-uniform 
DIF if there is an interaction between ability level and group member-
ship. For an item which displays non-uniform DIF the probability of 
answering an item correctly is not the same over all matched ability levels 
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for the groups (Mellenbergh, 1982). Although Hanson (1998) claims 
that one also should make a distinction between unidirectional and par-
allel DIF instead of only reporting uniform DIF they have not been sepa-
rated in this report because they are only relevant for the item response 
functions. The sixth and final criterion is whether the method can handle 
the cut-off score in a special way or not. This criterion is included since 
the focus is on criterion-referenced licensing test and hence we should 
pay special attention to the cut-off score. Finally, a discussion of required 
sample sizes was included. 
 
2.1 A criterion-referenced licensing test 
 
An example of a criterion-referenced licensing test is the Swedish theory 
driving-license test. The test takers have to answer at least 52 (i.e. the 
cut-off score) items correctly out of the 65 dichotomously scored multi-
ple-choice items in order to pass the test (SRA, 1996). Several different 
groups of test takers are exposed to the test which makes it especially 
important that test takers with equal ability are not discriminated against 
depending on which group they belong to e.g. different ethnic or gender 
groups. DIF has only been part of one study of the Swedish driving li-
cense test (Wiberg, 2006). It is, however, common to study DIF in stan-
dardized Swedish tests, see e.g. Stage (1999) or Wester (1997) who ex-
amined DIF in the Swedish Scholastic Assessment Test 
 
3. Theoretical review of DIF methods 
 
3.1 Non-parametric methods 
 
Non-parametric methods are not based on a specific statistical model 
although they may rely on strong assumptions. These methods are par-
ticular useful when the sample sizes are small for the groups of interest 
(Camilli, 2006). In this section contingency table approaches and the 
SIBTEST will be described. Since Mantel-Haenszel procedures are the 
most well-known and used procedure it will be treated separately al-
though it belongs to the contingency table approaches. 
 
3.1.1 Mantel-Haenszel procedures 
 
Mantel-Haenszel procedures belong to contingency tables procedures, 
together with logistic regression, log linear models and some simpler 
indices. Mantel and Haenszel DIF procedures developed from Mantel & 
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Haenszel (1959) and was proposed as a method for detecting DIF by 
Holland & Thayer (1988). Although these methods can easily be ex-
tended to polytomously scored items only the dichotomously scored item 
approach will be described here. The Mantel-Haenszel (MH) test is the 
most often used method for detecting uniform DIF (Clauser & Mazor, 
1998). 
 
The MH test relies on K  contingency tables for each item as is seen in 
Table 1, where each group of test takers are compared regarding their 
result on the item given their total test scores, i.e. a K×× 22  table, 
where 1...,1 −= nK  is the various total test scores except for 0 and n  
(Holland & Thayer, 1988). 
 
Table 1. Contingency table for an item for the reference and focal group with 

total test score k . 
 Item score  
 Correct = 1 Incorrect = 0 Total 

Reference group 
kn11  kn12  kn +1  

Focal group 
kn21  kn22  kn +2  

Total 
kn 1+  kn 2+  kn ++  

 
The MH test statistic tests the null hypothesis of no relation between 
group membership and test performance on an item after controlling for 
ability (usually in terms of overall test performance). The test is based on 
the odds ratio between correct and incorrect responses, between a refer-
ence and a focal group when conditioning on total test score. In general, 
the odds ratio is defined as  
 

)1(
)1(

RF

FR
RFOR

ππ
ππ

−
−

=  

 
where πF and πR represent the probability to answer an item correct for 
the focal and reference group respectively. If the odds ratio is 1 it means 
that there is no difference between the focal group and the reference 
group. The resulting test statistic has a chi-squared distribution with one 
degree of freedom, 
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correction which is used because this is based on a normal approximation 
of the uniformly most powerful unbiased test and therefore the odds 
ratio is 1 (Cox, 1988). The odds ratio is required to be uniform and kn11  
must follows a hypergeometric distribution. A variation of MH test is the 
Mantel-Haenszel-Cochran test which basically yields the same result but 
the continuity correction is removed and the variance is slightly changed. 
 
As a measure of the effect size the estimate of the constant odds ratio is 
used on item level and has range ),0( ∞  
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This measure is usually transformed into  
 

MHMH αβ ˆln= .   (1) 
 
A positive value of (1) indicates DIF in favor of the reference group, 
while a negative value indicates DIF in favor of the focal group. For his-
torical reasons, (1) is transformed into 
 
 α̂ln35.2 −=− DIFDMH    (2) 
 
(Angoff, 1993; Holland & Thayer, 1985). A negative value of (2) indi-
cates that the item is more difficult for the focal group. The Educational 
Testing Service, ETS, categorizes the degree of DIF in the items as fol-
lows (Zieky, 1993). 
 

MHA  Negligible DIF, items have DIFDMH −  not significantly differ-

ent from zero using 2
MHχ  or 1 <− DIFDMH  
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MHB  Intermediate DIF, items have DIFDMH −  significantly different 

from zero and either (a) 5.1 <− DIFDMH  or (b) 

DIFDMH −  above 1, but not significantly different from 1. 

MHC  Large DIF, items have DIFDMH −  significantly greater than 1.0 

and 1 ≥− DIFDMH .5. 

 
Longford, Holland & Thayer (1993) comments that if an item is classi-
fied as A one can still include the item. If the item is classified as B one 
should examine if there are other items one can choose to include in the 
test instead, i.e. an item with a smaller absolute value of DIFDMH − . 
Finally, an item classified as C should only be chosen if it meets essential 
specifications but documentation and corroboration by a reviewer is re-
quired. It should also be noted that the number of test takers in the focal 
group can have a strong influence on the DIF categorization, i.e. more 
items are classified as category B and C with larger focal and reference 
group sizes. 
 
3.1.2. Non-parametric contingency table approaches 
 
There are other non-parametric contingency table methods than MH 
that have been used for measuring the effect size of DIF. One of them is 
the proportion difference measure which is also referred to as standardiza-
tion (Dorans & Kulick, 1986). The idea is to combine the difference in 
proportion of test takers who answer an item correctly across the focal 
and reference group given their levels of total test scores. They use a 
weighted average of the difference in proportions between the two 
groups that accounts for the number of test takers on each level of total 
test score. There are two versions; the unsigned proportion difference and 
the signed proportion difference indices depending on whether one takes 
into account the sign of the difference or not. They are also referred to as 
standardized p-differences and root-mean weighted squared differences re-
spectively. See e.g. Dorans & Holland (1993) or Camilli & Shephard 
(1994) for a description. The most commonly used is the standardized p-
difference which is defined as 
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The item is interpreted as a DIF item if the difference is either >0.10 or 
<-0.10 (Dorans, 1989). This measure is highly correlated with 

DIFDMH −  across items (Camilli & Shepard, 1994; Donoghue, Hol-
land, & Thayer, 1993). Also, as with MH it uses observed test score as 
matching variable. Zieky (1993) denotes that ETS uses both the MH test 
and the standardized p-difference in their routines since they are easy to 
work with and give stable results. The latter is especially useful for meas-
uring the size of DIF. Camilli & Shephard (1994) also recommend using 
the standardized difference index since it is a good description and can be 
used for explaining the nature of DIF. An advantage with standardiza-
tion is that it is simple although it lacks a test of significance (Clauser & 
Mazor, 1998; Millsap & Everson, 1993).  
 
Other non-parametric contingency methods for testing for DIF than 
MH are closely connected to the indices of measuring DIF. These are 
later referred to as chi-square methods. For example, the null hypothesis 
is either that the proportion correct between the reference and the focal 
group is the same or that their odds ratio is 1. The summed chi-square for 
identifying DIF is described in Camilli & Shephard (1994) but the 
original test can be traced back to Fisher (1938). The basic idea is to 
calculate a chi-square statistic on each ability level in a 22×  table and 
then combine them into one test statistic for all ability levels. This statis-
tic detects any departure that is large enough but is not commonly used 
since e.g. the MH is a more powerful nonparametric method (Camilli & 
Shephard, 1994; Holland & Thayer, 1988). Methods that are no longer 
in use include a chi-squared method developed by Scheuneman (1979) 
which was criticized by Baker (1981) for yielding values that were irrele-
vantly affected by the size of the sample and with no known sampling 
distribution, meaning not a chi-squared test. Angoff (1993) also de-
scribes a full chi-square procedure that was used before the development 
of MH. The chi-square tests have the advantage of being reliable within 
usual standards and being homogeneous (Ironson, 1982). 
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3.1.3 SIBTEST 
 
The Simultaneous Bias Test, SIBTEST, was proposed by Shealy & Stout 
(1993) and is a modification of the standardization index to detect DIF. 
In the SIBTEST one tests the null hypothesis 
 
 0)()()(:0 =−= τπτπ FRTBH  
 
where B(T) is the difference in probability (π ) of correct response be-
tween the reference (R) and the focal group (F) on a specific item when 
matched on true score τ . The test statistic is  

 
)ˆ(ˆ

ˆ
U

U

B
B

B
σ

= ,  

 

where ∑ −=
k FRkU kk

YYpB )(ˆˆ ** , i.e.  the average weighted item difficulty 

difference when one has controlled for the matching variable. )ˆ(ˆ UBσ  is 

the standard deviation and the test statistic B̂  is normally distributed 
(Wonsuk, 2003). kp̂  is the proportion of test takers in the focal group 

who obtained the score kX =  on the subtest;  *
kRY  and *

kFY  are the ad-

justed means in the subgroup k for the test takers when a regression cor-
rection procedure is used. (Shealy & Stout, 1993). The regression correc-
tion procedure controls the effects of type 1 error in the valid subtest 
items (Grierl, Khaliq, & Boughton, 1999; Stout, 2002). It is also possi-
ble to measure the amount of DIF in the SIBTEST using the estimate 

β̂ . Because this estimate is highly correlated with DIFDMH − Roussos 
& Stout (1996) proposed the following guidelines to evaluate the size of 
DIF, and these have also been used by Zheng, Gierl & Cui (2007) 
 

βA  Negligible DIF, 059.0<β  and 0H  is rejected. 

βB  Moderate DIF, 088.0059.0 ≤≤ β  and 0H  is rejected. 

βC  Large DIF, 088.0>β  and 0H  is rejected. 

 
The SIBTEST was initially used to study groups of items simultaneously, 
although it is also possible to study one item at the time (Camilli, 2006; 
Narayanan & Swaminathan, 1996; Roussos & Stout, 1996; Shealy & 
Stout, 1993). The SIBTEST performs well compared with MH when 
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only analyzing one item. The method was developed to model multidi-
mensional data but it is suitable for one-dimensional data as well. The 
latent ability space is viewed as multidimensional, and includes a one 
dimensional ability of interest together with nuisance ability. In the be-
ginning all items are used in the matching criterion, but if an item dis-
plays DIF it is removed from the matching criterion. The process is re-
peated until a valid subset of items is identified that does not contain any 
DIF items. The items can also be divided into two subsets depending on 
whether they are suspected to have DIF or not. A disadvantage of the 
SIBTEST is that it is not entirely robust to between-group differences in 
the unconditional distribution of the ability. This is a problem which the 
SIBTEST shares with other methods which use the proportion differ-
ence, if between group effects are present in the unconditional distribu-
tion of the examinees ability (Penfield & Camilli, 2007) A problem with 
using the SIBTEST is that a special computer program is needed. The 
SIBTEST have high power in detection of non-uniform DIF, and has 
high agreement in this sense with logistic regression (Narayanan & Swa-
minathan, 1996). 
 
 
3.2 Parametric methods 
 
Parametric methods use a specified model to examine DIF. Methods 
described here include logistic regression, item response theory models, 
log linear models and mixed effect models. The likelihood ratio test will 
be treated separately as it can be applied on several different kinds of 
models.  
 
 
3.2.1 Logistic regression 
 
Logistic regression (LR) for detecting DIF was first proposed by Swami-
nathan & Rogers (1990) but it is a well known statistical procedure. LR 
relies on the following assumptions. First, the dependent variable must 
be a discrete random variable. Second, there should be a linear relation-
ship between the continuous variables and the dependent variables logit 
transformation. Third, a test takers’ answer on one item should be inde-
pendent of the test takers’ answer on any other items. Fourth, each inde-
pendent variable should be measured without an error. Fifth, the errors 
should be uncorrelated with the independent variable, have a mean of 
zero and be normally distributed. Sixth, the error variance should be 
constant across levels of the independent variable (homoscedasticity). 
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Together with these assumptions there should neither exist multicolin-
earity in the data material nor any influential outliers (Tabachnick & 
Fidell, 2001).  
 
LR for detecting DIF is based on modeling the probability of answering 
an item correctly by group membership and a conditioning variable, 
usually the observed total test score. The presence of DIF is determined 
by testing the improvement in model fit when the group membership 
variable and the interaction between test score and group membership 
variable is added to the model. According to Camilli & Shephard (1994) 
LR also belongs to contingency table approaches. Let U = 1 if the test 
taker has answered the item correctly and 0 otherwise. The LR model for 
the probability that test takers answer an item correctly can be defined as  
 

z

z

e
eU
+

==
1

)1(π  , 

 
where [ ]ijijij πππ −== 1ln)(logitz is given from the logit transforma-

tion. The three models of interests are 
 

1. )(3210 GGZ θββθββ +++=  

2. GZ 210 βθββ ++=  

3. θββ 10 +=Z  
 
where θ  is the test takers ability (usually represented by the total test 
score) and G  is the group membership, coded as 1 if the test taker is a 
member of the focal group and 2 if the test taker is a member of the ref-
erence group (Swaminathan & Rogers, 1990). Since the coefficients are 
estimated using maximum likelihood estimation we can test for DIF 
using likelihood ratio test statistics. The first model is the augmented 
model and can be used to test for both uniform and non-uniform DIF 
simultaneously. The second model allows us to test for uniform DIF. 
The third (null) model is used when there is no DIF in the item. To test 
if the item has uniform and/or non-uniform DIF we can compare the fit 
of the augmented model with the null model. If 2β  is significantly sepa-
rated from zero, it means that the odds of answering an item is different 
between the two groups. If 1β  is significantly separated from zero it 
means that the odds of answering an item correctly increase with in-
creased total test score. If 3β  is significantly separated from zero it means 
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that there is non-uniform DIF (Camilli, 2006; Camilli & Shepard, 
1994). 
 
The idea is to choose among these three models the model that fits the 
data best according to a parsimony principle. In the first step model 1 is 
tested against model 2 using a likelihood ratio test with one degree of 
freedom. If there is a significant difference we have non-uniform DIF, if 
it is not significant we proceed to the next step. In the second step, we 
test model 2 against model 3. If there is a significant difference we have 
uniform DIF in the item, but if the difference is not significant we con-
clude that the item does not display DIF. 
 
There is not just one single method for measuring the size of DIF in LR, 
instead many different methods have been suggested and the two most 
commonly used are described here. First, Nagelkerke is defined as 
 

2
max

22 RRR CSNk = , 

where 2
CSR  is Cox & Snell’s 2R  and [ ] 2/2

max )0(1 nLR −= , where L(0) is 
the likelihood for model 1 (O´Connel, 2006). Zumbo (1999), however, 
suggested using a weighted least squares R squared to measure the effect 
size, i.e. to measure the amount of uniform or non-uniform DIF when 
LR is used 

 
)3 model()1 model( 222 RRR −=∆ . 

 
There are at least two system of categorization of DIF when LR is used 
(Hidalgo & López-Pina, 2004). Zumbo & Thomas (1997) proposed the 
following categories according to Hidalgo & López-Pina (2004) 
 

LRZA  Negligible DIF: 13.02 <∆R  

LRZB  Moderate DIF: 26.013.0 2 ≤∆≤ R  

LRZC  Large DIF: 26.02 >∆R  
 
The categories LRZB  and LRZC  also require the statistical tests to flag 
DIF. More recently, Jodoin & Gierl (2001) have proposed using the 
following guidelines since they are more sensitive to detect DIF (Hidalgo 
& López-Pina, 2004).  
 

LRA  Negligible DIF: 035.02 <∆R  
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LRB  Moderate DIF: 070.0035.0 2 ≤∆≤ R  

LRC  Large DIF: 070.02 >∆R  
 
Note that categories LRB  and LRC  also require that the null hypothesis 
of no DIF is rejected. Which categorization to use is left to the reader to 
decide. An advantage with LR models is their flexibility to include other 
variables, and other estimates of ability than total test score. The flexible 
LR model also allows for conditioning simultaneously on multiple abili-
ties (Clauser & Mazor, 1998; Millsap & Everson, 1993) and can be ex-
tended to multiple test taker groups (Agresti, 2002; Miller & Spray, 
1993). LR has high power in detection of non-uniform DIF, as men-
tioned earlier it also displays a high agreement with the SIBTEST in this 
sense (Narayanan & Swaminathan, 1996). 
 
 
3.2.2. Likelihood ratio test 
 
The Likelihood ratio test (LRT) is used in connection with several mod-
els, e.g. both the LR and item response theory models, and is therefore 
given a special subsection. LRT is based on the idea that item parameters 
should be invariant across different subpopulations. An item has DIF if 
the likelihood is different between a (c)ompact model with few parame-
ters (i.e. the parameters are constrained to be the same) and an 
(a)ugmented model with all variables of interest (i.e. the parameters are 
allowed to differ). Regardless of model, anchor items are used to define a 
common latent metric against which the item with suspected DIF can be 
examined. The anchor items are assumed to be invariant across groups. 
The idea is to compare the likelihood of two models and choose the 
model which has the largest likelihood. The LRT test statistic is defined 
as  
 

[ ] 2
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2 ~)()(2
) model(
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where m is the difference in number of parameters between the aug-
mented and the compact model. The goal is to test if the additional vari-
ables in the augmented model are significantly different from zero. This 
test statistic is distributed as chi-squared with m degrees of freedom un-
der the null hypothesis. (Camilli, 2006; Rao, 1973; Thissen, Steinberg, 
& Wainer, 1988). 
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It is usually recommended that the overall goodness-of-fit of the model is 
tested before proceeding with testing for DIF. However, if the number of 
items in the test are large and there are many observed zeros in the cross-
classifying table (according to the item responses) the general multino-
mial alternative hypothesis is unreasonable and therefore no satisfactory 
goodness-of-fit test is available at the moment (Thissen, Steinberg, & 
Wainer, 1993). A second use of LRT is to test for DIF in a specific item. 
The idea is to first compute the maximum likelihood (ML) estimates of 
the parameters of the compact model in the specific item and then the 
likelihood. Then compute the ML estimates and likelihood for the aug-
mented model which includes parameters representing the difference 
between the reference and the focal group. In the last step the LRT is 
used to examine the item for DIF (Thissen et al., 1993). 
 
A large weight of evidence so far supports the use of the LRT over other 
methods (Millsap & Everson, 1993). It is the best measure of statistical 
significance but not a good effect size index (Wonsuk, 2003). Therefore, 
it is recommended that graphs are made to inspect the differences if there 
are any differences. Note, it might be problematic to use LRT if the 
sample size is small in any of the focal groups (Camilli, 2006). 
 
 
3.2.3 Item response theory methods 
 
There are a number of Item Response Theory (IRT) methods for detect-
ing DIF due to the fact that there are a number of IRT models (see e.g. 
Hambleton & Swaminathan (1985) for an introduction to IRT). All 
IRT methods are parametric methods since they include modeling the 
items. The most simple and widely used models are the one-, two- and 
three-parameter logistic models, i.e. 1PL, 2PL and 3PL. IRT relies on the 
assumptions that the performance on an item can be explained by or 
predicted from the test takers latent ability and that this relationship can 
be modeled as an item characteristic curve, ICC. The 3PL model is de-
fined as 

 )(
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where ia  is the item discrimination, ib  is the item difficulty and ic  is 
the pseudo-guessing parameter. The 2PL model is obtained by setting 
the pseudo-guessing parameter equal to 0 and the 1PL model is obtained 
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by also setting the item discrimination equal to 1 (Birnbaum, 1968; 
Hambleton & Swaminathan, 1985; Lord, 1980). All of the methods for 
IRT use an estimate of the latent ability as a matching variable. The gen-
eral idea is to estimate the item parameters separately for the reference 
and the focal group. If the item does not display DIF the item character-
istic curve, ICC, should be identical when placed on the same scale. If an 
item displays DIF it can be shown in different ways. The item might 
display DIF in only one of the item parameters (e.g. difficulty) or in all 
of them (see e.g. Camilli & Shephard, 1994 or Clauser & Mazor, 1988). 
When examining DIF using IRT it is also common to examine Differen-
tial Test Functioning, DTF, at the same time. DTF refers to a difference 
in the test characteristic curves, obtained by summing up the item re-
sponse functions for each group. Camilli (2006) points out that large 
sample sizes are needed when using DIF with IRT. It is especially impor-
tant that the focal group is not too small in order to obtain stable results. 
 
Angoff (1993) pointed out that the 3PL model more accurately model an 
item because it allows the item discrimination to vary and includes a 
pseudo-guessing parameter. The 1PL model can be seriously misleading 
as indicating DIF although it is really just a difference in item discrimi-
nation or in guessing (Camilli & Shepard, 1994). Both uniform and 
non-uniform DIF can be detected using IRT procedures. When using 
IRT, an item shows uniform DIF when the ICCs for two groups are 
different but parallel, while an item displays non-uniform DIF when two 
groups’ ICCs are different but none parallel. The area between the two 
groups’ ICC gives a hint of the degree of DIF in the item (Camilli, 2006; 
Camilli & Shephard, 1994; Swaminathan & Rogers, 1990). There are 
both statistical tests and measures of effect size of DIF in IRT and they 
are performed by comparing the item parameters across groups (Camilli 
& Shepard, 1994; Lord, 1980). There are four general IRT approaches; 
General IRT-LR, loglinear IRT-LR, limited information IRT-LR and IRT-
D2. These approaches all give optimal parameter estimates and statistical 
tests for DIF. The choice between them depends on the data-analytic 
context. They will be described in short below. 
 
General IRT-LR uses the Bock-Aitkin (Bock & Aitkin, 1981) marginal 
maximum likelihood estimation algorithm to estimate the parameters 
and the LRT to examine the significance of observed differences (Thissen 
et al., 1993). It is easy to perform by using e.g. the program Multilog 
(Du Toit, 2003). An advantage is that it can be varied in several ways, 
and it only relies on the assumption that the population distribution is 
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Gaussian. A disadvantage is that it is labor-intensive and computationally 
intensive (Thissen et al., 1993).  
 
Limited-information IRT-LR uses generalized least squares estimation for 
normal-ogive item response models and LRT:s to examine the signifi-
cance of observed differences (see e.g. Thissen, Steinberg & Wainer 
(1993). The limited-information IRT-LR uses information in lower or-
der margins of the response-pattern cross-classification of respondents 
instead of complete table of response pattern frequencies. It is in general 
computed using LISPCOMP, a program for structural equation model-
ing (Thissen et al., 1993). This approach will not be discussed further 
here. 
 
Log linear IRT-LR uses maximum likelihood estimation for log linear 
item response models and LRT to examine the significance of observed 
differences (Kelderman, 1990). The largest limitation with the log linear 
IRT-LR is that it is only suitable when using the 1PL (Rasch) model 
(Thissen et al., 1993). This method only emphasizes the difference in 
item difficulty, and disregards any difference in guessing or in item dis-
crimination as opposed to other IRT methods. Hence, it has more limi-
tation than other IRT methods and will not be discussed further in this 
paper. 
 
IRT-D2 uses marginal maximum likelihood estimation and ratios of pa-
rameter estimates for their standard errors to examine the significance of 
observed differences (see e.g. Thissen, Steinberg & Wainer (1993). IRT-
D2 is built on parameter drift, which is a special case of DIF, i.e. if the 
item parameters (and therefore the ICC:s) differ across groups during 
time. This method only emphasizes the difference in item difficulty as 
opposed to other IRT methods, hence it is a more limited method and 
will not be discussed further in this paper. The interested reader is re-
ferred to e.g. Thissen, Steinberg & Wainer (1993) for more details. 
 
 
3.2.3.1 Testing DIF with IRT 
 
There are at least five IRT methods for testing the statistical hypothesis 
of no DIF in an item; test of b difference, item drift method, Lord’s chi-
square, empirical sampling distributions for DIF indices and measurement of 
model comparisons. The simplest way to test for DIF is to test the differ-
ence of the item difficulty b using an ordinary statistical test for testing 
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the null hypothesis of no difference between the two groups of interest 
(see Lord, 1980). Another, relatively simple, way is to examine the item 
drift, i.e. to examine any change in difficulty between two items. The 
idea is to let the reference group and the focal group take the test on dif-
ferent occasions. Any change in the item difficulty is interpreted as a 
difference between the two groups. The method has practical advantages 
since it is easy to apply, however it treats item discrimination as equal 
across group and this may lead to confounding with group differences 
(Camilli & Shephard, 1994). Since other IRT methods can handle this, 
these methods are excluded from further discussion in this paper. 
 
Lord’s chi-squared test is an extension of the test of b difference which also 
includes differences in item discrimination. Start by constructing the 
vector of item parameter differences; 
 

 )ˆˆ,ˆˆ( RFRF bbaaV −−= . 
 
The test statistic is defined as 
 
 Q = VS-1V 
 
where S is the variance-covariance matrix of differences between the item 
parameters. Q follows a chi-square distribution with degrees of freedom 
equal to number of parameter estimated (Camilli, 2006; Lord, 1980). 
Refer to Lord (1980) for more computational details. Although the 
method is sensitive to both uniform and non-uniform DIF it has a large 
disadvantage. It is possible that the null hypothesis of no DIF is rejected 
although the ICC:s of two groups are similar, because different combina-
tions of item discrimination and item difficulty may produce similar 
ICC:s although the item does not display DIF (Camilli & Shephard, 
1994). Results from the Lord’s chi-squared test correlates fairly well with 
unsigned area indices (Millsap & Everson, 1993; Shepard, Camilli, & 
Williams, 1984). A disadvantage is that it sometimes rejects the null hy-
pothesis if the unsigned area between two ICC:s is fairly small through-
out the range of ability in which most data appear (Millsap & Everson, 
1993). 
 
The empirical sampling distributions for DIF indices include a number of 
more or less sophisticated methods. One of the simpler methods is de-
scribed by Shephard, Camilli & Williams (1984). The idea is to ran-
domly assign test takers to a reference and a focal group and then exam-
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ine their responses on an item as compared to the rest of the items. The 
extreme values from the reference and the focal groups are then used as 
critical values for DIF. Although this method is tempting it is labor-
intensive and is usually restricted to methodology studies (Camilli & 
Shephard, 1994). This method is therefore excluded from further discus-
sion in this paper since the issue of interest here is to find one or more 
suitable methods to use in practice with empirical data. 
 
The last category measurement of model comparisons, labeled IRT LRT in 
later discussions is one of the most widely used and uses the LRT to test 
if an item has DIF. Refer to the LRT section for a general description of 
this method. In IRT the compact model is the IRT model tested and the 
augmented model is the general multinomial model including all possi-
ble parameters that could augment the compact model, given the result 
that the observed and expected frequencies in each cell are equal (Thissen 
et al., 1993). When using LRT to test for DIF in IRT models the com-
pact model is defined from the constraint that the item’s parameters for 
the two groups of interest are identical. There is only one restricted 
model in a test but as many augmented models as there are items. For 
example if we use the 3PL model the augmented model will contain six 
variables (two variables for each item parameter since there are two 
groups) and the restricted model will contain three variables (assuming 
that the item parameters are alike across groups) (Camilli & Shephard, 
1994). 
 
 
3.2.3.2 Measure size of DIF with IRT 
 
There are at least four different IRT measurements of DIF; simple area 
indices, probability difference indices, b parameter difference and ICC 
method for small samples. Simple area indices are descriptive measurements 
of the area between the ICC for two groups. A small area indicates small 
DIF and a large area indicate large DIF. It is a simple way to visualize 
DIF between two groups by comparing the area between the ICC from 
the two groups, see e.g. Raju (1988) or (1990). However, a disadvantage 
with the methods is that they may not take into account the region of 
the ability continuum with the highest density of test takers and the in-
tegrals used to estimate the area do not yield finite values if the c parame-
ter, in the 3PL model, is not equal across groups (Camilli & Shephard, 
1994). It is also problematic to use with polytomously scored items since 
one has to compare so many different curves. Further, not all simple area 
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indices provide a standard error, although Raju’s (1988) method is an 
exception (Millsap & Everson, 1993). In order to solve the problem with 
ability continuum in the simple area indices probability difference indices 
have been developed by Linn & Harnisch (1981) and Shephard, Camilli 
& Williams (1984). The idea is to weight the areas in order to reflect the 
reliability of the difference between the two ICC:s. The third IRT meas-
urement of DIF; b parameter indices is simply the difference in the item 
difficulty parameter between the two groups (Camilli & Shephard, 
1994). The last method of measurement was proposed by Linn & Har-
nisch (1981) and the basic idea is to compare the item ability parameter 
estimates for the whole group with the estimates in the focal group. The 
method has mainly been used in the past when computer power was low 
and it was difficult to estimate the item parameters. Camilli & Shephard 
(1994) suggest that probability differences indices or b parameter differences 
should be used instead of this last method since they are more reliable. 
Since the other two methods are more limiting and less reliable they are 
excluded from further discussion in this study. 
 
The IRT methods are not equally sensitive for DIF. Strong IRT models 
(e.g. the 1PL model) have the most sensitive tests of DIF when these 
models are accurate. These models can also compensate to some extent 
for incomplete data. The signed and unsigned probability difference sta-
tistics are easy to calculate and are recommended since they are stable, 
and can detect DIF in regions where the data occurs in the ICC graph. 
The model comparison approach is recommended by Camilli & 
Shephard, 1994). IRT DIF indices based on joint maximum likelihood 
item statistics should be avoided because the estimation might be poor. It 
is also possible to test the improvement of the fit of a model by compar-
ing fit between parameter estimates of the whole group compared with 
parameter estimates of the fit when a specific group has been excluded 
(Thissen et al., 1993). The IRT LRT tests have been shown to be stable 
and are easy to extend to permit simultaneous test of bias for multiple 
items. The only disadvantage is that unbiased anchor items are needed 
(Millsap & Everson, 1993).  
 
 
3.2.4 Log linear models 
 
Log linear models (LLM) for detecting DIF were suggested by Mellen-
bergh (1982) and have been used in the past (see e.g. Kelderman & 
Macready, 1990)). However, the method is quite powerful and should 
not be disregarded. It is a parametric method and also a contingency 
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table method which uses the observed test score as matching variable. 
The general idea is to model the items on accordance with a LLM which 
accounts for the total test score divided into intervals, a group term and 
the item difficulty 
 

)(123)(23)(13)(12)(3)(2)(1ln ijkkkjkjiijkF µµµµµµµµ +++++++=  

 
where ijkF  is the expected frequency, and )(1 iµ  is the item score effect, 

)(2 jµ  is the j:th group effect and )(3 kµ  is the k:th score level. This model 

is usually reformulated as 
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where jkF1  and jkF0  is the expected frequency of correct and incorrect 

response on item j by group j on test score level k respectively. α  is the 
overall item difficulty, β  is the test score effect and γ  is the group ef-
fect. If this model holds the item displays non-uniform DIF and one can 
eliminate only the interaction term the item displays uniform DIF and if 
one can eliminate both group terms the item does not display DIF. To 
test the model for DIF the LRT, as described previously, is usually used 
although Pearson’s chi-squared test may also be used (Kelderman & 
Macready, 1990; Millsap & Everson, 1993). Advantages of using LLM 
include their flexibility and that they can easily be extended to polyto-
mously scored items, multiple test takers or simultaneous DIF detection 
in several items (Agresti, 2002). However, it has been argued that LLM 
do not represent data adequately except when the items can be modeled 
with a 1PL model, because in that model the total score is a sufficient 
statistic. Millsap & Everson (1993) claim that LLM are less suitable for 
more complex models such as the 2PL model  
 
 
3.2.5. Mixed Effect Models 
 
A new parametric approach of modeling items has been suggested during 
the last couple of years, although the statistical technique has existed 
longer, se e.g. Pinheiro & Bates (2001). The main idea is to view not all 
factors as fixed but instead view one or more as random. It is most com-
mon to view the item parameters as fixed and considered the test takers’ 
parameters as random effects. Mixed-effect models are suitable both for 
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linear and non-linear modeling. Using this approach there are two possi-
bilities for examining DIF; either examine a random item effect or a ran-
dom group effect (De Boeck & Wilson, 2004). One can study both uni-
form and non-uniform DIF with this approach for both dichotomously 
and polytomously scored items using different variations of the mixed 
effect models. Although the mixed effect modeling approach is flexible a 
disadvantage is that it is a new method that requires more research. Soft-
ware development has been made but it has not been used extensively on 
large data sets and it is computer intensive if the model is complicated. 
For more information of how to examine DIF using these models see e.g. 
Meulders & Xie (2004). 
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4. Comparisons of methods 
 
In order to choose which DIF methods to use the criteria given in the 
method section will be discussed together with a note on required sample 
sizes. The comparison focused on criterion-referenced licensing tests with 
dichotomously scored items that measure one dimensional ability. Only 
the general methods are discussed and not the more specialized men-
tioned in the previous section. No matter which method is chosen it is 
desirable that the method has high statistical power to detect DIF, i.e. 
high probability of identifying DIF in an item, while controlling for type 
1 error, which is. the probability of identifying an item as DIF when the 
item has no DIF. A summary of results of the comparison with respect to 
the previously described criteria is given in Table 2. Note, whether the 
method can take special care of the cut-off score is not included in the 
table but will nevertheless be discussed, as will sample size requirements. 
 
Table 2. DIF methods categorized depending on their nature. 1. (Par)ametric 

or (non-p)arametric. 2. Matching variable; (Obs)erved or (Lat)ent 3. 
D)ichotomusly or (P)olytomously scored items. 4. Whether one can 
(T)est and/or (M)easure DIF. 5. Able to handle (U)niform and 
(N)onuniform DIF. 

Method Par/ 
Non-p 

Obs/ 
Latent 

Item 
scores 

T/M  U/N 

Mantel-Haenszel Non-p Obs D/P T/M U 
Standardization Non-p Obs D M U 
Chi-square methods Non-p Obs D T U 
SIBTEST Non-p Lat D/P T/M U/N 
Logistic Regression Par Obs D/P T/M U/N 
Likelihood ratio test Par Obs/Lat D/P T/M U/N 
Prob. diff. indices Par Lat D M U/N 
b parameter indices Par Lat D M U/N 
General IRT-LR Par Lat D/P T/M U/N 
IRT LRT Par Lat D/P T U/N 
IRT methods Par Lat D/P T/M U/N 
Lord’s chi-squared test Par Lat D T U/N 
Log linear models  Par Obs D/P T U/N 
Mixed effect models Par Lat D/P T U/N 
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4.1 Parametric vs. non-parametric  
 
First, if we use a parametric method it is very important that the model 
assumptions are fulfilled. If the chosen model’s assumptions are violated 
either another model should be chosen or a non-parametric method 
should be used instead. It is of course also possible to use a non-
parametric approach to start with but then it is usually more difficult to 
control for covariates. An advantage with non-parametric tests, as e.g. the 
chi-square tests, is the lack of assumption about the distribution of ability 
in the population of interest (Ironson, 1982). The SIBTEST only as-
sumes monotonicity for example. 
 
All parametric methods have more or less strict assumptions which have 
to be fulfilled otherwise they should not be used. LR, e.g. rely on the 
strong assumption that the relationship between the probability of an-
swer an item correct and the observed test score is linear. Both Embret-
son & Reise (2000) and Lord (1980) have shown that the observed test 
score is nonlinearly related to the examinees latent ability. MH (Camilli, 
2006), Also, using either of the IRT methods means to rely on the strong 
assumption of one dimension in the test. In conclusion, if the model fits 
the data and the assumptions are fulfilled a parametric DIF method can 
be used. If one cannot find a model with model assumptions fulfilled or 
the model does not fit the data a non-parametric method should be cho-
sen instead. The contingency table approaches (MH, LR, LLM, chi-
square tests), i.e. including both non-parametric and parametric ap-
proaches, have the disadvantage that no parameter is usually available for 
guessing and discrimination in these as compared with IRT methods. 
Instead discrimination among items is usually assumed to be equal across 
items for the focal and reference groups (Camilli, 2006). MH, LR and 
LLM work best when the data can be modeled with a 1PL model but is 
more problematic if the data is modeled with a 2PL or a 3PL model 
(Millsap & Everson, 1993). Note, under some assumptions LLM can 
yield the same result as LR. 
 
 
4.2 Matching variable 
 
The second criterion concerned the nature of the matching variable; ob-
served or latent. To choose between these two usually requires an idea of 
whether to use classic test theory (observed score) or modern test theory 
(latent score). This may influence how the whole test is examined and/or 
how the result is reported. Methods that use the observed score as match-
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ing variable include MH, standardization, chi-square methods, LR and 
LLM. All these methods yield poor results if the total score is a poor 
proxy of the latent ability, e.g. it includes other abilities too. A general 
disadvantage with all the methods that use the observed test scores is that 
it makes the strong assumption that ability is adequately represented by 
the total test score. The total test score is not a perfect measure of a test 
takers’ ability and it requires that the test is valid (Ironson, 1982; Millsap 
& Everson, 1993). Note, although both LR and MH uses the observed 
score as matching variable, in LR the continuous test score variable does 
not need to be classified, hence there might be less errors. The binary LR 
model can also be generalized to use with ordinal scores (Rogers & Swa-
minathan, 1993; Swaminathan & Rogers, 1990). Moreover, LR is more 
efficient than to use multiple matching as required by the MH analysis 
(Mazor, Kanjee, & Clauser, 1995). MH has been noted to both over- 
and under-estimate DIF according to several factors such as e.g. match-
ing variable (Holland & Thayer, 1988), guessing (Camilli & Penfield, 
1997), and when there is a lack of sufficient statistic for matching 
(Zwick, 1990). 
 
IRT methods, the non-parametric SIBTEST, and mixed effect models 
do not use the observed score as matching variable, instead they use a 
latent variable. It has been argued that the latent score is a more precise 
measure of the ability of the test takers. The problems of using the ob-
served score as matching variable can be solved by removing biased items 
iteratively and redo the analysis (van der Flier, Mellenbergh, Ader, & 
Wijn, 1984). Therefore, no matter which method(s) are chosen it is rec-
ommended that all methods should be used iteratively (Camilli & 
Shephard, 1994). 
 
 
4.3 Dichotomously vs. polytomously 
 
The third criterion, whether the methods can handle dichotomously and 
polytomously scored items, less important since the main concern has 
been dichotomously scored items. This criterion is merely used to show 
upon if the method is flexible if some items in a test are given a different 
item format. Note that MH, the SIBTEST, LR, LRT, general IRT-LR, 
LLM and mixed effect models are all flexible in this sense. Originally, the 
MH was not design to use with polytomously scored items but has been 
extended to fulfill this purpose (Zwick, Donoghue, & Grimo, 1993). 
The LR has also been adapted to polytomously scored items (Camilli & 
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Congdon, 1999) although there have been reports of difficultness to ap-
ply LR to polytomously DIF (Wonsuk, 2003). 
 
 
4.4 Measure and/or test DIF 
 
The fourth criterion, whether the method can both detect and measure 
DIF, has to be considered. It is of course possible to choose a method 
which only handles either of these parts if the chosen method is used as a 
complement to another method which handles the other part. It also 
depends on the purpose of performing a DIF study. Is the primary aim 
to identify problematic items or do we want to measure the size of DIF 
in order to choose which items to disregard? MH, the SIBTEST, LR, 
LRT, General IRT-LR and IRT methods are all methods which can both 
test and measure the size of DIF. The other methods have the disadvan-
tage of either only measuring size of DIF (probability difference indices 
and b parameter indices) or only providing significant test of DIF (chi-
square methods, Lord’s chi-square test, LLM and mixed effect models). 
 
 
4.5 Uniform vs. non-uniform DIF 
 
The fifth criterion, whether the methods can handle uniform DIF and 
non-uniform DIF is quite important, since we cannot assume that the 
behavior of DIF is linear. Most non-parametric methods can only handle 
uniform DIF satisfactorily. The MH, e.g. has the disadvantage that it is 
designed to measure uniform DIF, which means that it is not that sensi-
tive to non-uniform DIF. It has been suggested that MH can be modi-
fied in order to use it for detecting non-uniform DIF (Mazor, Clauser, & 
Hambleton, 1994), but it is still mostly used for detecting uniform DIF. 
In Table 2 it is classified as uniform DIF since the detection of non-
uniform DIF is not yet widely accepted. Hidalgo & Lopéz (2004) states 
that MH is somewhat more powerful than LR in detecting uniform DIF. 
However, the LR has a higher statistical power level than MH ap-
proaches in detecting non-uniform DIF (Hidalgo & López-Pina, 2004; 
Miller & Spray, 1993; Rogers & Swaminathan, 1993; Swaminathan & 
Rogers, 1990). Camilli & Shephard (1994) recommend using LR to for 
detecting DIF. The conclusion is therefore to use LR instead of MH if 
LR model assumptions are fulfilled, otherwise use MH. If only uniform 
DIF is of interest MH can of course be used instead of LR. The stan-
dardization method and MH have been shown to give similar results 
(Wonsuk, 2003), which can lead us to conclude that they can be use 
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interchangeably. Standardization (standardized p-difference) also has 
problems detecting non-uniform DIF (Penfield & Camilli, 2007). The 
SIBTEST can, however, detect non-uniform DIF satisfactorily even 
though it is a non-parametric test. All parametric methods in this study 
can handle both kinds of DIF. 
 
 
4.6 Handle the cut-off score 
 
The sixth criterion was especially chosen because we have a criterion-
referenced licensing test and it concerns whether the methods allow for 
special consideration of the cut-off score. One possibility is to divide the 
test takers’ score in any of the contingency table approaches according to 
whether the test takers’ score are below or above the cut-off score. In 
both MH and LR e.g. it is possible to divide the matching variable and 
control the ability among e.g. test takers which failed the test or only 
among test takers who passed the test. Another possibility is to use meth-
ods where the observed score are always categorized and included as such 
in the model as e.g. in LLM, and maybe mixed effect models. Note that 
it is possible to use LRT with several of these methods. To divide the 
total score into intervals is problematic if a latent variable is used as 
matching variable, although it might be possible to model the test takers 
with respect to whether they are above or below the cut-off score in e.g. 
mixed models. Another possibility is to model each interval of test takers 
separately using e.g. IRT models, and then compare them. These ideas 
have not been tried before and more research is needed. 
 
 
4.7 Sample size 
 
The contingency table approaches (including MH, LR and LLM) have 
the advantage that they only require small sample sizes, especially in 
comparison with IRT (Ironson, 1982; Penfield & Camilli, 2007). In 
particular, when the sample size of the focal group is small it is problem-
atic to use the IRT methods (Camilli, 2006). Camilli & Shephard 
(1994) recommend using weak (complex) IRT models (e.g. the 3PL 
model) for research when there is a large enough sample and using the 
more inexpensive contingency tables approaches in applications. These 
IRT methods are also computational intensive (Clauser & Mazor, 1998; 
Millsap & Everson, 1993). 
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Swaminathan & Gifford (1983) stated 1000 test takers where needed 
when 20 items were used. Hulin, Lissak, and Drasgow (1982) observed a 
trade-off between test-length and sample size; when using either at least 
1000 test takers and 60 items or 2000 test takers and 30 items it is possi-
ble to make accurate parameter estimates using the 3PL model. Note that 
the accuracy of the DIF analysis is highly dependent on the validity of 
the chosen IRT model (Camilli & Shephard, 1994). The SIBTEST 
works well with a fairly small sample, i.e. from 250 test takers although 
the test should preferably have 20 items or more (Millsap & Everson, 
1993). The (un)signed area indices demand large sample sizes but are not 
known to give stable results and they do not take into respect the exami-
nees distribution across ability; this means that these indices can exagger-
ate the amount of DIF in a population.  
 
 
5. Strategies for performing a DIF analysis 
 
5.1. Selection of methods 
 
The test of interest is a criterion-referenced licensing test with dichoto-
mously scored items which limits the range of possible methods. Camilli 
& Shephard (1994) repeatedly emphasized the importance of using sev-
eral methods for testing and measuring DIF and therefore more than one 
method will be recommended. Keeping the chosen criteria and the above 
recommendation in mind four methods are recommended to examine 
empirically for detecting and measuring DIF in a dichotomously scored 
criterion-referenced licensing tests. A summary of the selected methods is 
given in Table 3. 
 
Table 3. Selected DIF methods categorized with respect to the given criteria. 1. 

(Par)ametric or (non-p)arametric. 2. Nature of the matching variable; 
(Obs)erved or (Lat)ent 3. D)ichotomusly  or (P)olytomously scored 
items. 4. Whether one can (T)est and/or (M)easure DIF. 5. Handle 
(U)niform and (N)onuniform DIF. 

Method Par/ 
Non-p 

Obs/ 
Latent 

Item 
scores 

T/M  U/N 

LR (Logistic Regression) Par Obs D/P T/M U/N 
IRT methods Par Lat D/P T/M U/N 
LLM (Log linear models)  Par Obs D/P T U/N 
MH (Mantel-Haenszel) Non-p Obs D/P T/M U 
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First, LR was chosen because it is a flexible method that can detect both 
uniform and non-uniform DIF. LR usually uses the observed score as 
matching variable. Therefore, an IRT procedure was as well chosen be-
cause they are also known to detect both non-uniform and uniform DIF 
but rely on a latent score as matching variable. Both these methods can 
be extended to polytomously scored items and can not only detect but 
also measure DIF. However, both of these methods rely on strong model 
assumptions which have to be examined carefully. For the moment it is 
not known if these assumptions will be met in the test we have in mind. 
Therefore, two contingency table approaches; LLM and MH were also 
chosen. LLM also rely on strong assumptions but they are different from 
the other chosen methods. Furthermore, LLM can handle both di-
chotomously and polytomously scored items, as well as uniform and 
non-uniform DIF. A disadvantage is that there is no known scale for 
interpreting the size of DIF, however, with more research such a scale 
might appear in the future. Finally, the MH was chosen because it is a 
non-parametric method which does not rely on strong model assump-
tions. Further, it can handle both dichomotously and polytomously 
scored items, it can both measure and test DIF. It cannot, however, satis-
factorily detect non-uniform DIF. In all these four methods it is possible 
to either model the cut-off score or divide the test takers score in differ-
ent ways to ensure that the cut-off score is taken into special considera-
tion. All these four methods can be used as complements to each other as 
long as the model assumptions are fulfilled. 
 
When a method has been chosen one needs to choose a sample to per-
form the DIF analysis. When performing a DIF study the size of the 
sample depends not only on the method chosen but also on when the 
DIF analysis is done. If the DIF analysis is made in the test assembly, at 
least 100 test takers should be included in the smaller group and a total 
of at least 500 test takers should be included. If the DIF analysis is per-
formed before reporting the total score but after the regular test, at least 
200 test takers should be included in the smaller group and 600 test tak-
ers in the total group. If examining DIF after reporting total test score at 
least 500 test takers in the smaller group should be used (Zieky, 1993). 
Clauser & Mazor (1998) comment that the larger the sample size the 
more accurate is the tests, especially when using IRT methods. 



 31

5.2 DIF analyses strategies 
 
The overall aim was to find suitable methods for detecting and measur-
ing DIF in a dichotomously scored criterion-referenced licensing test as 
e.g. the Swedish theory driving-license test. Different methods for detect-
ing DIF have been discussed and compared. The methods were classified 
as being non-parametric or parametric methods, as to whether their 
matching variable is observed or latent score, whether the items are di-
chotomously or polytomously scored, and whether they test and/or 
measure DIF. Further, it was examined whether they can handle both 
uniform and non-uniform DIF satisfactory and whether they can treat 
(or model) the groups above or below the cut-off score especially or not. 
Finally, a short discussion of required sample sizes was added. 
 
The comparison of methods did not single out one method that can be 
recommended; instead the suggestion was to examine at least four meth-
ods; MH, LR, LLM, and an IRT method. To decide between these 
methods an empirical study is needed, however that is beyond the scope 
of this study. Instead this section will focus on the discussion of the 
meaning of DIF and how to proceed if a test contains DIF items. Note, 
that to ensure that we have a valid test it is not enough to just examine 
DIF in a test. A whole validation process is needed, see e.g. Haladyna 
(2006) for suggestions on how to proceed. It is also important to keep in 
mind(2006) ideas of validation, i.e. in which context the test is used in 
order for it to be valid. Here a discussion on how to perform a DIF 
analysis will be in focus. 
 
First of all, it has to be stated that an item should always be examined 
before it is put into a test so that it is not offensive or demeaning for any 
member of a group, see Berk (1982) for a summary of these procedures 
for six test publishers. An updated version is given by Ramsey (1993) 
who labeled it sensitivity analysis. This analysis is performed in order to 
a) balance the test b) not foster stereotypes c) not include gender-based 
or ethnocentric assumptions d) avoid the test being offensive to any test 
taker e) not contain controversial material which is not demanded by the 
subject f) avoid elitism or ethnocentrism. 
 
After the sensitivity analysis has been performed one can pretest the item 
in a smaller group so that all items can be examined for DIF (Longford, 
Holland & Thayer, 1993). Burton & Burton (1993) noted that screen-
ing pretested item for DIF reduced the amount of DIF items in a regular 
test. The DIF screening did not have a substantial effect on item diffi-
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culty, item discrimination or average test scores of the focal group as 
compared with the reference group. It is also important to emphasize 
that easy items are more likely to be flagged as displaying DIF than more 
difficult items (Linn, 1993). Therefore, it is wise to compare the DIF 
statistics obtained with other item statistics since they are related to over-
all item difficulty and item discrimination (Burton & Burton, 1993; 
Linn, 1993). The item discrimination was defined in this case as the 
biserial correlation between the item and the total test score and the dif-
ference in difficulty between the focal and the reference group (Linn, 
1993). Item difficulty was defined as percentage correct on the item. In 
the Burton & Burton (1993) study the MH D-DIF was used as DIF 
measure.  
 
Note that DIF studies can never be performed routinely without reflec-
tion, they have to be followed up with an examination of why a particu-
lar item displays DIF. A statistical inference test which gives significant 
result of DIF does not imply practical significance and needs to be com-
plemented with practical measures of size. If an item in a test displays 
DIF, one should try to find the source of the DIF, because it is not nec-
essarily a bad item. An item might display DIF if it has a different item 
format than the rest of the items in the test (Longford et al., 1993). An-
other possibility is that the item measures an ability different from the 
one measured in the test or reflect that two groups have learned some-
thing with different pedagogical methods, hence making an item easier 
for one of the groups (Camilli, 2006). If it really is an item that favors 
one group, conditional on the ability, there are some strategies that one 
can apply. The most common ones are a) rewrite the item b) remove the 
item c) control for the underlying differences using an IRT model for 
scoring respondents. If however the item is kept in the test the test con-
structor should have a reason for that decision. 
 
If an item displays DIF there also has to be a judgment whether the item 
is unfair to any of the groups. How fair the item is depends on the pur-
pose of the test. It is also possible that the difference in total test scores 
reflects a genuine difference in ability between the groups, hence no DIF 
exists. DIF statistics can only answer trivial questions such as: “Do the 
items measure the same across different groups?” However, they do not 
address questions such as the (un)intended consequences of the test or if 
the test is fair (Camilli & Shepard, 1994; Zieky, 1993). It is therefore 
important that one decides how large a DIF is reasonable in an item be-
fore it is removed. There also has to be guidelines about when an item 
should be sent for review. Should it be sent only if it favors the reference 
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group (i.e. the majority) or also if it favors the focal group? What action 
should be done if the item displays DIF? Should it be removed or rewrit-
ten? Usually, this depends on the measurement decision or the serious-
ness of the measurement errors (Zumbo, 1999). 
 
In practice it is rare to remove items which display DIF in a given test, 
unless it is discovered before the test is administrated. However, exami-
nation of DIF can help test developers to construct more fair tests 
(Penfield & Camilli, 2007). A word of warning, just because a test has 
no items that display DIF does not mean that the test is fair. As DIF 
analysis rely on an internal criterion, e.g. using the total test score as the 
ability, DIF studies cannot detect constant bias. If all items in a test dis-
plays DIF we will not be able to detect this because the observed score 
will in general be underestimated and we are using the estimated ability 
of the test takers as a control. Another problem when running a DIF 
analysis is that it might be problematic to define the grouping variable if 
we chose e.g. educational background (Penfield & Camilli, 2007). 
 
One way of improving the analysis is to use the DIF methods iteratively, 
i.e. to remove the biased items and re-examine DIF to check for poten-
tially biased items (Camilli & Shephard, 1994). Note, however, that the 
potential DIF item should always be included in the matching variable 
test score otherwise the DIF analysis can yield strange results and e.g. the 
MH procedure does not work correctly if the DIF item is removed 
(Dorans & Holland, 1993; Holland & Thayer, 1988; Lewis, 1993; 
Zwick, 1990). Also, it might be impossible to remove all DIF, because 
the focal and reference group do not have the same life experience. 
 
 
5.3 Further research 
 
This has been a theoretical review of possible DIF methods to be used 
with a dichotomously scored criterion-referenced licensing test, as e.g. 
the Swedish theory driving-license test. The next step is to examine and 
compare the suggested methods using empirical data to see if they yield 
similar results and if the assumptions they rely on hold. If an item dis-
plays DIF it is also important to examine the item carefully in order to 
try to explain why the item displays DIF.  
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