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The squared cross-validity coefficient is a mea-
sure of the predictive validity of a sample linear
prediction equation. It provides a more realistic
assessment of the usefulness of the equation than
the squared multiple-correlation coefficient. The
squared cross-validity coefficient cannot be larger
than the squared multiple-correlation coefficient; its
size is affected by the number of predictor variables

and the size of the sample. Sample-size tables are
presented that should result in very small discrepan-
cies between the squared multiple correlation and the
squared cross-validity correlation, thus facilitating
the selection of sample size for predictive studies.
Index terms: cross-validity coefficient, least-squares
regression, multiple correlation, prediction, sample
size.

When regression analysis is used in a prediction context, it is important to distinguish between
thepopulationlinear regression function,

Ỹ = β0 + β1X1 + · · · + βJ XJ , (1)

and thesamplelinear prediction function,

Ŷ = β̂0 + β̂1X1 + · · · + β̂J XJ . (2)

The squared multiple correlation is

ρ2 = ρ2
Y Ỹ

=
(
βββ ′σσσxy

)2

σ 2
yβββ ′666xxβββ

, (3)

whereβββ denotes theJ ×1 vector of population regression coefficients,σσσxy denotes theJ ×1 vector
of covariances between the criterion variable (Y ) and the predictors (X1, X2, . . . , XJ ), and666xx

denotes theJ ×J covariance matrix forX1, X2, . . . , XJ . The coefficientρ2 measures the accuracy
with which the population linear regression function predictsY .

According to Browne (1975), the accuracy of predictions based on the sample linear prediction
function can be measured by the squared cross-validity coefficient

ω2 = ρ2
Y Ŷ

=
(
β̂ββ

′
σσσxy

)2

σ2
y β̂ββ

′
666xxβ̂ββ

, (4)

whereβ̂ββ denotes theJ ×1 vector of sample regression coefficients. As pointed out by Raju, Bilgic,
Edwards, & Fleer (1997),

ω2 ≤ ρ2 , (5)
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with equality if and only ifβ̂ββ = βββ. As numerous authors indicate (e.g., Darlington, 1978),ω2 is
more important thanρ2 in assessing the accuracy of prediction because the sample linear prediction
function is used in practice to calculate predicted values ofY .

Due to the importance ofω2, a substantial number of procedures have been developed for
estimatingω2 (e.g., Browne, 1975; Cattin, 1980a, 1980b; Darlington, 1978). A review of these
procedures and their estimation accuracy was presented by Raju et al. (1997).

Although it is important to estimateω2, it is equally important to plan a prediction study so that
ω2 is sufficiently close toρ2. Sample size (N) affects the difference betweenω2 andρ2. That is,
the larger the value ofN , the smaller the expected shrinkage or disparity betweenρ2 andω2 (e.g.,
Raju et al., 1997). Of course, the requiredN is a function of the number of predictor variables.
However, if theN required could be determined in advance so that the difference (c) betweenρ2

andω2 was at a desired small value (e.g., .025, .05, .075, or .10), the selection ofN for a prediction
study could be facilitated. A table to accomplish this is provided here.

Determining Cross-Validation Sample Sizes

Method

According to Browne (1975),ω2 is invariant under nonsingular transformations of the predictors.
That is, ifX1, X2, . . . , XJ are replaced byJ linear combinations of these variables and if none of
these new variables is perfectly predictable from the remainingJ − 1, ω2 will be unchanged by the
transformation. Further, because666xx is nonsingular, without loss of generality, it can be assumed
that

666xx = I , (6)

σ2
y = 1 , (7)

and

σσσ xy = βββ , (8)

where

β1 = ρ (9)

and

βj = 0, j = 2, · · · , J . (10)

Data. The population regression equation used to generate the data in this study was

Y = ρX1 + 0X2 + · · · + 0XJ + ε

√
1 − ρ2 , (11)

whereX1, X2, . . . , XJ andε are multivariate normal and mutually uncorrelated. The mean and
variance ofε were 0 and 1, respectively. Samples of multivariate normal data were generated and
ω2 was calculated (see Equation 4) for 5,000 replications of each combination of (1) the number
of predictor variables (J ) from 2 to 20 in steps of 2, (2) squared multiple-correlation coefficients
from .15 to .75 in steps of .10, and (3) sample sizes from 25 to 950 in steps of 25. The 5,000 values
of ω2 estimated the distribution ofω2 for a particular combination ofJ , N , andρ2. Note thatω2
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is a parametric measure of cross-validity, that it varies across samples, and that it cannot be larger
thanρ2.

Analysis. The accuracy criterion wasc = ρ2 − ω2. For each combination ofJ , N , andρ2, the
proportion of replications was determined in whichc ≤ .025, .05, .075, or .10. Next, the smallest
sample size (N∗) was determined for each combination ofJ , ρ, andc, such that the probability was
at least .95 that the accuracy criterion would be met. Then, multivariate normal data were generated
5,000 times for sample sizes betweenN∗ − 20 andN∗ − 5 in steps of 5, andω2 was computed.
The smallest sample size was found such that the estimated probability that the accuracy criterion
would be met was at least .95.

The distribution ofω2 was not estimated forN ≤ 25. Therefore, for some combinations of
J , ρ2, andc, whenN = 25, the estimated probability,P [ρ2 − ω2 ≤ c], was substantially larger
than .95.

Results

Table 1 shows the smallest sample sizes for whichP [ρ2 − ω2 ≤ c] ≈ .95, for c = .10, .075,
.05, and .025. In general,N increased as the number of predictors increased.N also increased
asρ2 − ω2 became more stringent. The increase inN was particularly large whenc was reduced
from .05 to .025. For many combinations ofρ2 andJ , N nearly doubled whenc changed from .05
to .025. Forc = .10, .075, and .05, and asρ2 increased from .15 to .25,N was quite inconsistent,
sometimes increasing, sometimes decreasing, and sometimes staying the same.N decreased with
additional increases inρ2, except when the lower limit ofN = 25 was reached. Forc = .025,N
decreased asρ2 increased. Thus, in using Table 1 to select an appropriateN , it is important to be
conservative in specifying a value ofρ2. TheN indicated in Table 1 will tend to be too small to
the degree that the specified value ofρ2 is larger than the actual value ofρ2.

Discussion

Raju, Bilgic, Edwards, & Fleer (1999) used data from the Armed Services Vocational Aptitude
Battery to evaluate estimators ofω2. It is of interest to compare the results reported by Raju et al.,
which were based on real (non-normal) data, and the results of the present study, which were based
on multivariate normal data. Raju et. al reported thatρ2 = .229 forJ = 8 predictors. ForN = 200,
the mean and standard deviation ofω2 were estimated to be .203 and .015, respectively. Using a
normal distribution to approximate the distribution ofω2, the .05 percentile point of the distribution
is .178. Thus, withN = 200, the approximateP [ρ2 − ω2 ≤ .05] was .95. In the present study,
Table 1 shows that, whenJ = 8 andρ2 = .25,N = 200 forP [ρ2 − ω2 ≤ .05] ≈ .95.

For N = 100, the mean and standard deviation ofω2 were estimated to be .180 and .026,
respectively. Based on the normal approximation, the .05 percentile point of the distribution is
.137. Thus, withN = 100, the approximateP [ρ2 − ω2 ≤ .092] was .95. In Table 1, whenJ = 8
andρ2 = .25,N = 100 forP [ρ2 −ω2 ≤ .10] ≈ .95. Although the calculations based on the results
in Raju et al. were approximate, they supported the accuracy ofN for data that are non-normal to
some degree.

Estimation ofω2, whether by single or double cross-validation studies or by formula, is intended
to provide a more realistic appraisal of the usefulness of a prediction equation. Many authors
(e.g., Drasgow, Dorans, & Tucker, 1979; Raju et al., 1997, 1999) have found that formula-based
procedures are as, if not more, effective for estimating the cross-validity coefficient. These same
authors have indicated that the shrinkage (i.e.,ρ2 − ω2) expected is related to the number of
predictor variables and the sample size. The results presented here provide sample sizes that
should ensure that the difference betweenρ2 andω2 will be at some small value (i.e., .025, .05,
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Table 1
Sample Size (N) and Estimated Probability (̂P ) Required for
P [(ρ2 − ω2) ≤ .10] ≈ .95 Whenc = .10, .75, .05, and .025,

for ρ2 = .15 to .75 andJ = 2 to 20 Predictors

ρ2

c andJ .15 .25 .35 .45 .55 .65 .75

c = .10
J = 2

N 35 35 30 25 25 25 25
P̂ .950 .954 .950 .952 .965 .982 .996

J = 4
N 60 60 55 50 45 35 30
P̂ .957 .954 .956 .961 .968 .962 .976

J = 6
N 75 80 75 65 55 50 40
P̂ .953 .956 .961 .951 .951 .968 .971

J = 8
N 90 100 95 85 70 60 55
P̂ .959 .959 .960 .962 .954 .957 .955

J = 10
N 100 115 110 100 85 70 55
P̂ .957 .954 .957 .961 .957 .958 .959

J = 12
N 115 130 125 115 100 80 65
P̂ .957 .951 .958 .959 .952 .954 .964

J = 14
N 125 145 140 125 110 90 70
P̂ .954 .952 .954 .952 .951 .951 .957

J = 16
N 135 160 160 140 125 105 80
P̂ .954 .951 .954 .951 .956 .951 .956

J = 18
N 150 180 175 155 135 115 90
P̂ .957 .956 .959 .950 .951 .967 .963

J = 20
N 160 190 185 170 150 120 95
P̂ .956 .951 .957 .957 .963 .953 .957

c = .075
J = 2

N 50 45 40 35 25 25 25
P̂ .958 .959 .956 .963 .952 .960 .984

J = 4
N 80 80 70 65 55 45 35
P̂ .953 .955 .952 .959 .956 .962 .961

J = 6
N 110 110 100 85 75 60 45
P̂ .950 .959 .954 .951 .955 .950 .954

continued on next page
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Table 1, continued
Sample Size (N) and Estimated Probability (̂P ) Required for
P [(ρ2 − ω2) ≤ .10] ≈ .95 Whenc = .10, .75, .05, and .025,

for ρ2 = .15 to .75 andJ = 2 to 20 Predictors

ρ2

c andJ .15 .25 .35 .45 .55 .65 .75

c = .075 (continued)
J = 8

N 130 135 125 110 95 75 60
P̂ .956 .953 .961 .961 .961 .953 .968

J = 10
N 155 155 145 130 115 90 70
P̂ .959 .951 .950 .956 .963 .957 .961

J = 12
N 175 185 165 150 130 105 80
P̂ .954 .956 .951 .954 .955 .955 .955

J = 14
N 190 205 190 170 150 120 90
P̂ .951 .953 .951 .952 .966 .955 .956

J = 16
N 215 225 210 185 165 135 100
P̂ .957 .952 .951 .952 .957 .954 .953

J = 18
N 235 250 230 205 180 150 115
P̂ .953 .954 .950 .952 .954 .961 .966

J = 20
N 250 275 250 220 190 160 120
P̂ .954 .961 .952 .951 .953 .954 .953

c = .05
J = 2

N 70 65 60 50 40 30 25
P̂ .956 .956 .962 .952 .956 .950 .961

J = 4
N 130 115 105 90 75 65 45
P̂ .958 .950 .951 .951 .951 .960 .954

J = 6
N 170 165 145 125 105 85 65
P̂ .954 .956 .961 .955 .952 .952 .953

J = 8
N 215 200 190 160 130 110 85
P̂ .956 .953 .958 .954 .951 .961 .970

J = 10
N 245 245 215 190 160 130 100
P̂ .950 .954 .950 .951 .958 .957 .962

J = 12
N 285 285 255 225 185 145 115
P̂ .955 .961 .955 .957 .953 .950 .965

J = 14
N 325 310 290 250 210 170 130
P̂ .954 .951 .955 .951 .955 .952 .961

continued on next page
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Table 1, continued
Sample Size (N) and Estimated Probability (̂P ) Required for
P [(ρ2 − ω2) ≤ .10] ≈ .95 Whenc = .10, .75, .05, and .025,

for ρ2 = .15 to .75 andJ = 2 to 20 Predictors

ρ2

c andJ .15 .25 .35 .45 .55 .65 .75

c = .05 (continued)
J = 16

N 360 350 325 280 235 190 150
P̂ .951 .954 .958 .954 .957 .951 .951

J = 18
N 390 390 350 305 255 205 155
P̂ .952 .956 .952 .952 .950 .951 .953

J = 20
N 400 425 390 335 285 225 170
P̂ .956 .958 .960 .954 .956 .951 .951

c = .025
J = 2

N 135 120 100 90 75 60 45
P̂ .951 .954 .950 .950 .953 .961 .956

J = 4
N 255 235 200 180 145 115 85
P̂ .951 .951 .951 .957 .952 .950 .952

J = 6
N 360 325 290 245 205 165 120
P̂ .952 .953 .950 .950 .955 .959 .956

J = 8
N 450 415 360 310 265 205 150
P̂ .952 .952 .954 .952 .961 .956 .954

J = 10
N 530 490 430 375 305 245 180
P̂ .950 .951 .950 .951 .954 .955 .953

J = 12
N 620 565 510 430 360 290 210
P̂ .951 .955 .953 .957 .952 .960 .957

J = 14
N 705 645 570 485 410 320 240
P̂ .954 .951 .952 .952 .954 .950 .952

J = 16
N 775 725 630 535 450 360 265
P̂ .952 .955 .951 .951 .963 .953 .955

J = 18
N 845 785 700 605 495 400 290
P̂ .950 .952 .952 .954 .953 .952 .953

J = 20
N 920 865 760 655 550 435 315
P̂ .954 .957 .956 .952 .950 .952 .951
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.075, or .10) approximately 95% of the time. These data facilitate planning predictor studies and
provide confidence that the sample linear prediction function will give valid values according to
the accuracy criterion used.
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