
Note on Shrinkage: Is the Squared Validity Coefficient always smaller than the R-Squared from the 

Original Sample? 

According to Osborne, 2000 (http://pareonline.net/getvn.asp?v=7&n=2),  

“To perform cross-validation, a researcher will either gather two large samples, or one very 

large sample which will be split into two samples via random selection procedures. The 

prediction equation is created in the first sample. That equation is then used to create 

predicted scores for the members of the second sample. The predicted scores are then 

correlated with the observed scores on the dependent variable (ryy'). This is called the cross-

validity coefficient. The difference between the original R-squared and ryy'2 is the shrinkage. 

The smaller the shrinkage, the more confidence we can have in the generalizability of the 

equation.” 

So, it is usually the case that the original R-squared is larger than the squared cross-

validity coefficient, and the interest is how much shrinkage has occurred.  However, the 

point of this note is that it is possible that the squared cross-validity coefficient is actually 

larger than the original R-squared. 

Suppose you only have one predictor (X).  Then, the regression equation from the derivation 

sample is 
'

1 1 1 1Y a b X  .  Here, the subscript 1 indicates Sample 1 (derivation sample). 

Using those 1a  and 1b , one can obtain 
'

1 1 2cvY a b X  , where 
'

cvY  is the predicated score for the 

cross validation sample (Sample 2) based on the regression coefficients from the derivation 

sample.  Now if you correlate 2Y (observed Y) from the cross validation sample with 
'

cvY , you 

will get the cross validity coefficient.  However, actually, '
2 , cvY Y

r (cross validation coefficient) = 

2 2,Y Xr (Square root of R-squared from the validation sample).  It is because the correlation 

will not change when one of the variables is linearly transformed.  
'

cvY is a linear 

transformation of 2X (
'

1 1 2cvY a b X  ).  Therefore, you are comparing the R-squared from 

the derivation sample with the R-squared from the validation sample.  So it is just as likely 

to get a larger R-squared from the validation sample. 

Of course, this is less likely when you move on to multiple regression.  You will start to see 

that the squared cross validation coefficient is smaller (shrunk) than the original R-squared.  

In the example above by Osborne, he reports the original R-squared of .55 and the squared 

cross validation coefficient of .53, thus the shrinkage of 2%.  He had 4 predictors in his 

model. 

So, the point of this note is that you should not get surprised if your squared cross 

validation coefficient is actually bigger (so “expansion” instead of “shrinkage) than the 

original R-squared especially in the case of simple regression. 

For those who are interested in shrinkage, the following classic references are useful: 



Crueton, E. E. (1951). Validity. In E. F. Lindquist (Ed.), Educational Measurement 

(pp. 621 – 692). Washington, DC: American Council on Education. (See p. 692) 

Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores.  

Reading, MA: Addison-Wesley. (See pp. 284 – 293). 
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