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The purpose of this handout is to briefly introduce partial and semipartial 

correlations and describe their use in multiple regression analysis.  The essential concept 

embodied in these coefficients is the estimation of the relationship between a predictor 

variable and a criterion or outcome variable after controlling for the effects of other 

predictors in the equation.  This process of exercising statistical control is also known as 

partialing or residualization.  Also note that another name for the semipartial is the part 

correlation. 

Partialing attempts to determine the degree of association between two variables 

that would exist if all influences of one or more other variables could be removed.  

Partialing represents a method of exerting statistical control over variables.  It is 

important to distinguish statistical control from experimental control (e.g., random 

assignment to treatments, control by constancy, etc.).  Generally, experimental control 

provides stronger evidence than statistical control because it is directly managed by the 

researcher and planned a priori.   

 In multiple regression, the two most commonly used coefficients are the 

unstandardized and standardized partial regression coefficients. As their names imply, 

they involve partialling and represent the unique relationship between a given predictor 

and the criterion while controlling for all other predictors in the equation. Unstandardized 

coefficients are expressed in the scale units of the predictor of interest.  Standardized 

coefficients are expressed on a standardized scale that is expressed as a ratio of the 

standard deviations of Y and X.  Another more general name that is used in the General 

Linear Model for these coefficients is function coefficients. 

A partial correlation coefficient is another third way of expressing the unique 

relationship between the criterion and a predictor.  Partial correlation represents the 

correlation between the criterion and a predictor after common variance with other 

predictors has been removed from both the criterion and the predictor of interest.  That is, 

after removing variance that the criterion and the predictor have in common with other 

predictors, the partial expresses the correlation between the residualized predictor and the 

residualized criterion. 

 - 1 -



A semipartial correlation coefficient represents the correlation between the 

criterion and a predictor that has been residualized with respect to all other predictors in 

the equation.  Note that the criterion remains unaltered in the semipartial.  Only the 

predictor is residualized.  After removing variance that the predictor has in common with 

other predictors, the semipartial expresses the correlation between the residualized 

predictor and the unaltered criterion.  An important advantage of the semipartial is that 

the denominator of the coefficient (the total variance of the criterion, Y) remains the 

same no matter which predictor is being examined. This makes the semipartial very 

interpretable.  The square of the semipartial can be interpreted as the proportion of the 

criterion variance associated uniquely with the predictor.  It is also possible to use the 

semipartial to fully deconstruct the variance components in a regression analysis.  Since 

each squared semipartial represents the unique variance of that predictor shared with the 

criterion, the sum of the squared semipartials can be subtracted from the overall R2 for 

the regression equation as a while to determine the amount of common variance in the 

equation shared by multiple predictors with the criterion.  This common variance in 

nonexperimental research is likely not interpretable and of greatest use when the purpose 

of the research is predictive. 

The diagram on the next page illustrates these relationships between a criterion 

variable, Y, and two predictor variables, X1 and X2.  Areas of shared variance are labeled 

with lower case letters and these are then used to define coefficients. 
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Total variance of Y  =  a + b + c + e 
 
Zero-order correlations: 
r2

Y1  = a + c 
r2

Y2  = b + c 
r2

12  = c + d 
 
Variance of Y explained by regression model  =  a + b + c 
 
Variance of Y not explained by regression model  =  e 
 
R2

Y12 =  (a + b + c) / (a + b + c + e) 
 
Multicollinearity =  c + d  
 
Semipartial for X1 = sr2

1 = r2
Y(1.2) = R2

Y12 – r2
Y2 = a / (a + b + c + e) 

 
Semipartial for X2 = sr2

2 = r2
Y(2.1) = R2

Y12 – r2
Y1 = b / (a + b + c + e) 

 
Partial for X1 = pr2

1 = r2
Y1.2 = (R2

Y12 – r2
Y2) / (1 - r2

Y2) = a / (a + e) 
 
Partial for X2 = pr2

2 = r2
Y2.1 = (R2

Y12 – r2
Y1) / (1 - r2

Y1) = b / (b + e) 
 
pr2 > sr2 except when r2

12  = 0 
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