Converting \hat{d} to \hat{f} for the 2-group case

$$\hat{d} = t \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$
 (1)
 $\hat{f} = \sqrt{(k-1)\frac{F}{N}}$ (2)

When k (# groups) = 2, Equation (2) becomes

$$\hat{f} = \sqrt{\frac{F}{N}}$$
(3)

From Equation (1)

$$t^{2} = \frac{\hat{d}^{2}}{\frac{1}{n_{1}} + \frac{1}{n_{2}}}$$
(4)

Since $t^2 = F$, Equation (3) now becomes

$$\hat{f} = \sqrt{\frac{\hat{d}^2}{\frac{1}{n_1} + \frac{1}{n_2}} \cdot \frac{1}{N}}$$
(5)

Equation (5) converts \hat{d} to \hat{f} given sample sizes (n_1 - sample size for Group 1, n_2 - sample size for Group 2, and N - total sample size).

Chris Oshima

9/10/10