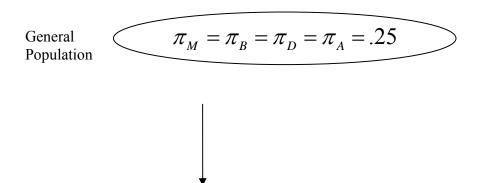
The Chi-Square Test



N = 200

Step 1

$$H_0$$
: $\pi_M = \pi_B = \pi_D = \pi_A = .25$

 H_1 : The proportions do differ.

$$\alpha = .05$$

Step 2

f_0	40	62	56	40
f_e	50	50	50	50

$$\chi^{2} = \Sigma \left[\frac{(f_{0} - f_{e})^{2}}{f_{e}} \right]$$

$$= \frac{(40 - 50)^{2}}{50} + \frac{(62 - 50)^{2}}{50} + \frac{(56 - 50)^{2}}{50} + \frac{(42 - 50)^{2}}{50} = 6.88$$

Step 3

1. Critical Value (CV) Approach

$$\chi^2_{crit} = \chi^2_{\alpha,df} = \chi^2_{.05,3} = 7.81$$

$$df = C - 1$$

$$\chi^2_{calc} < \chi^2_{crit}$$

Fail to reject H_0

2. The p value Approach

$$p = .08$$

$$p > \alpha$$

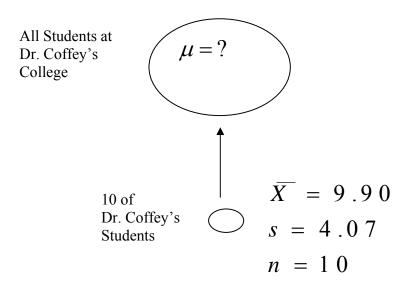
Fail to reject H_0

Step 4

Fail to reject H_0

There is insufficient evidence that, in the population, the four candidates differ in terms of the proportion of voters preferring each. ($\chi_3^2 = 6.88, p = .08$).

Interval Estimation



Point Estimate \pm (Critical Value at α)(SE)

$$\overline{X} \pm t_{\alpha,df} \cdot s_{\overline{X}}$$

A 95% (
$$\alpha$$
 = .05) Confidence Interval
9.90 ± (2.262) · (1.29) = 9.90 ± 2.92
6.98 < μ < 12.82

A 99% (
$$\alpha$$
 = .01) Confidence Interval
9.90 ± (3.250) · (1.29) = 9.90 ± 4.19
5.71 < μ < 14.09