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\ For complete understanding of Item Response Theory, you shoul 3
| probably have a good knowledge of a number of topics generalljjf
* covered in calculus and mathematical statistics courses. There are
those who seem to do quite well in IRT without knowledge of these
topics but I feel that it must be quite difficult for them at some
times.

The intention in this writing is to give you enough of these
topics to remove some of the mystery from IRT models. These topics
P will be review for some of you and introduction for others. It is
almost impossible to do justice to the topics in any short time
period. My hope is that when the topics come up in the study of
IRT, you will feel comfortable with the concepts.

Assumptions made for this writing are that you have had an
algebra course some time in your life, and that .you have had at
least an introductory course in statistics. If you do all the
exercises, you should feel more comfortable reading item response
theory than you would if you had not done them.

O




ALGEBRA

Everyone probably remembers most of the algebra necessary for
item response theory. This is because you have already been in
enough statistics courses to keep at least some of your knowledge
of algebra reasonably current. Some infrequently used areas are
also essential: exponents, logarithms, and e. These are discussed
here.

7 Exponents

The following rules regarding exponents are usually covered in
a high school algebra I class.

1 1
1 . X-y = and Xy = —
XY XY
2. p*pY = p*Y
3 . . PX/PY = Px-y
4 . . PX'QX - ( PQ) X
There isn't much to do for these but memorize them. Some

explanation of why they mean what they do will be given in class.
The best approach to memorizing the rules is to work lots of simple
problems like those 1n the set of exercises following these first
few sectlons

Logarithms

.One of the first things to learn about logarithms is that
there are different systems of logarithms which have different
bases. In general, two systems of logarithms cannot be mixed
without conversion from one to the other. There are formulas for
converting from one base to another, but these are not particularly
useful to us because we .will only work in one base. When
logarithms are being used, the user must know what base is being
used and not mix bases. This initial discussion will assume a base
of 10. When 10 is used as the base we use the term ‘'common
logarithms’

The logarithm of the number, x, is a number, m, such that

10" = x

'In other words, the logarithm of x is the number, m, which when 10

is raised to the m power gives us x. The logarithm of 10 is 1



because

10' = 10.
The logarithm of 100 is 2 because.
10* = 100.
Thérlogarithm of 100000 is 5.
What is the logarithm of 10000000000000007?

When base 10 logarithms are used it 1is customary to indicate this
by either writing

logy, (X) or simply
log (X) .
We can thus write:
log,,(100) = 2, and
log(1000) = 3.
’ ' o o 0
Since logarithms are exponents, they have the properties of{_J
_exponents. Rule 2 of the section on exponents says
p*-pY o Y
This fact can be used to do multiplication by taking the logarithms
“of the numbers to be multiplied, adding the logarithms, and then
raising the base to the sum of the logarithms. We are using rule
2 from the section on exponents. For example if the product

100-1000

is needed, one can notice that

log(100) = 2, and
~ 1og(1000) = 3.
'Thué, 100-1000 = 10*? = 10°> = 100000.
ASimilarly |
log(57) = 1.7559

log(18) = 1.2553

thus S7-18 _ 101-7559 + 1.2553 _ 130112 . 90241 (J
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Other bases rather than 10 can be used for logarithms. In some
applications, base 2 or base 16 is convenient. In statistics and

measurement, as in much of natural science, the constant

e = 2.,718282...

- is convenient to use as a base'. The logarithms using € as a base

are often referred to as ‘'natural logarithms' or ‘Naperian
logarithms' after the Scottish mathematician John Napier who is
credited with the discovery of logarithms. When base e is used,
the customary notation 1is

log,(x) or
1n(X)
This latter notation, 1ln(x), 1is the notation preferred by most

authors and is the notation to be used here.

In most measurement or statistical applications the natural
logarithm i1s used because many formulas and theories take their

‘simplest form using natural logarithms.

'Logarithms’show up in statistics and are often useful by being

" another way to do multiplication. Sometimes taking logarithms can

greatly simplify theory. This usually happens as a result of
moving from multiplication to addition. The theory is then made
more pliant because addition is simpler than multiplication.

o . ,

The natural logarithm base, e, 1s a constant like n which
occurs frequently in mathematics, statistics, and the natural
sciences. Also, e frequently appears in scientific models when
logarithms are not being used. The number may be found by taking
the following limit as n approcaches infinity.

limit (1 + 1/n)°
n -- 0o

For n from 1 to 10 the term (1 + 1/n)" evaluates as given in Table

1.

The next section discusses e, the base of natural
logarithms. :



Table 1

First ten terms of a sequence with e as the limit.

1
n (1 + 1/m)" |
1 2.
2 2.25 '
3 ©2.37037
4 2.44140
5 2.48832
6 2.52162
7 2.54650
8 2.56578
9 2.58117
10 2.59374

As you can see in Table 1, the value of the expression gets
larger as n gets larger. However it is a case of *“diminishing
returns* and there. is a limiting value to which the expression will
'~ come arbitrarily close and never exceed. The limiting value (to 10

-decimal places) of the- series is 2.7182818285 and is usually(fj
- written as e. S . ‘ .

L Tﬁis_numbér'appears,among other places, in the equation for
the normal curve:

This equation gives the height of the normal curve at x when the
curve has mean p and standard deviation o. If the curve is a
- standard normal curve, mean 0 and standard deviation 1, we write
f{(z) instead of f(x) to indicate this and the function reduces to:

f(x) = : e

v (2m)

e

‘This is the version which is tabled in normal curve area tables: (/j



Exercise Set 1

Use the exp, inverse 1n,
or similar function on a
hand calculator to find
the wvalue of - e. Give
directions for doing this
on your calculator.
(Remember, e' = e.)

Make a table similar to
Table 1 by using a hand
calculator to evaluate
the expression (1 + 1/n)"
for values of n from 10
to 100 in increments of
10, from 100 to 1000 in
increments of 100, and
from 1000 to 10000 1in

increments of 1000. (If

you know a programming
language, - this is
probably even -easier to
program than to do on a
hand calculator.) How
close to the value given
(to 10 decimal places) 1is
the final answer?

Use the 1ln function on a
hand calculator to find
the natural logarithm of

2.7182818285 . - Write
directions for doing
this.

Find the natural
logarithms of the

following numbers with a
calculator.

a) 2.

b) 7.389056099
c) 10

d) 100

e) 374

£f) 32.1889

g) 5.36668

7.

Use the natural logarithm
functions on a hand
calculator to find the
following products (Find
the logs, add them, raise

e to that power.). Check
your work by regular
multiplication.

a) 87 - 19 =

b) 126 - 43 =

c) .00234 - 145 =

- d) 135 - 35.26 =

e) .0145 - .00035

Simplify the following
expressions: '

a) X:x* =

b) xY/x* =

c) XX =

d) Xy =

e) X¥x* =

£)  Yy® = i
g) X¥/x? =

h) Xz'st _

Calculate the height of
the standard normal curve
at z = 0.
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Calculus

In most mathematics departments, calculus ‘is taught 1 hour per
day, S days a week, for an academic year. This fact causes me to
hesitate as I write this. Just how much can you be reasonably
expected to know and understand after the short instruction you
will have here? What misconceptions will you have after I omit so
much in order to get at the little that we can use in item
response theory? After posing these questions, I took my hands off
the keyboard and thought about this for some time. I could not
come to an answer. Let's take that as a warning, dig in, and see
how well we can do.

‘Two main branches of calculus are differential calculus and
integral calculus. In differential calculus the slope of a tangent
line to a curve is found. In integral calculus, areas under curves
are found. Differential calculus is studied first since, as we
will see, it logically precedes integral calculus in the theory.
Both branches of calculus consider continuous functions, so we
start with functional notation and continuity.

N ~ You probably remember graphing equations in introductory
- statistics classes. Figure 1 A graphs the linear equation
y = 2x +1 '

Figure 1

x/y Notation and Functional Notation

A B
Graph with 'y' notation Graph with functional notation, f(x)

Y ' ‘ f (x)

y =2x + 1 : f(x) = 2x + 1




in Figure 1 A, you see y plotted on the vertical axis, the
ordinate, and x plotted on the horizontal axis, the abscissa.
is common to refer to y as a function of x.
that the value of y is dependent on the value of x.
‘terminology 1s to refer to the variable on the horizontal axis as

the independent variable and the variable on the vertical axis as
the dependent variable.

it
This is in the sense
Another common

We usually indicate the functional relationship as fi{x).
Figure 1 A could be relabeled as in Figure 1 B with f(x) replacing

V. Here, y and f(x) are synonyms. The f(x) notation is used

 because it makes it evident that a functional relationship exists

and because it has certain ease of use advantages which will become
apparent as we use the notation.

Functlons are very formal and important relations in
mathematics. Functions are assignments or rules for pairing of
elements in one set with elements in another set. The first set 1is
called the domain of the function, the second set is called the
range of the function. The function is said to be a mapping from
one set to the other set. This is illustrated for the function

. £(x) = 2x +1 in Figure 2.

Figure-2

Functional Relationships

Domain _ Range
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The rulg for assigning an £(x) value to a given x has only the
restrictions that v

a) each x in the domain must be assigned a value
in the range. ‘ _

b) each x in the domain can only be assigned one
value in the second set.

It is wusually important that the domain and range of a
function be well defined. The definitions of the domain and range
are frequently implicit in the definition of the function and are
_thus not always discussed. For the functiony = 2x + 1, both the
domain and the range are the real numbers. Frequently,the domain
of the function is restricted. The function f(x) = vx has the
domain of all nonnegative real numbers which restricts the domain
of the square root function to zero and positive real numbers.

( :: . ) .

o Much of what can be done in calculus and other areas of higher
mathematics is . dependent on having continuous functions.
Intuitively, a continuous function is one in which there are no

holes. Consider an arbitrary smooth curve as illustrated in Figure,

3 A. If we remove one point from the curve, and move it up (o
down) the function is no longer continuous due to the gap at that
. point. This 'is shown in Figure 3 B.

Figure 3

Graphs of Continuous and Discontinuous Functions
A | B
Continuous Function Function with discontinuity at a
f (x) £ (x)
X a X

Discontinuous functions cause problems when working at or near
the point of discontinuity. The "gap" in the function causes
problems w1th f1nd1ng limits of the function of x. Considering

0
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qj). limiting values is frequently what is done in calculus.

Thus the

. restriction to continuous functions. Figure 4 shows some

| -additional functions with a point of discontinuity
i

- ' Figure 4

g Graphs of functions with discontinuities

| .

{

| ,

| £ (x) £ (x) ' £ (x)

| | — |

‘ X _ . X ) ' X

'iﬁ S ;1 Consider Figure 5. In that figure, an arbitrary functions

| - . has been drawn. The first has a maximum value. The second has a

- minimum value. Functions which might look like this are

| | ,. £(x) = -x* + 10x -25
| - and ‘
| f(x) = x* + 5
- Figure 5
A B

Function with a maximum Value Function with a minimum value

£ (x) S £ (x) S
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Simple functions similar to this can represent some very
important concepts. They could represent the height of an artillery
shell x minutes after leaving the cannon; the yield of a chemical

process as the temperature, x, 1is raised; or (nota bena) as in
Figure 5 B the sum of the squared differences between actual and

predicted values in a regression. problem. Someone investigating
these functions might well want to know where the maximum or
minimum value occurs. For what x is f(x) the greatest, or least,

value? At what time does the artillery shell reach its highest
point? At what temperature does the chemical process result in the
maximum yield? Where does the minimum sum of the squared error
terms occur? ' '

You might suggest that all one needs to do is draw the graph
and find the maximum by looking at the graph. That works for some
simple cases, - but as the functions grow more complex it turns out
to not be very satisfactory. An analytic approach is necessary,
one which yields an equation or formula which provides the answer.
Figure 6 illustrates the approach Notice that the tangent lines
to the curve at the maximum and mlnlmum are horizontal with a slope

of zero.

Tangent Lines to functions

£(x) | - *- £ (x)

i

Tangent lines are drawn to the function. Then the slope of the
" tangent line ‘is found. Next, reason that when the slope is zero,
the tangent has been drawn at a maximum or minimum value. Solution
found. Well, not quite found. First problem: is it a maximum or
a minimum? Next problem: some functions have more than one peak,
won't there be a tangent line with a zero slope at more than one
‘point? The time it takes to answer to these and other questions 1is .
one of the reasons ‘that calculus is studied for a year. (W)
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(F) One complication we do need to clear up is that of a relative
| - maximum Or minimum. It is possible for a function to have more
- than one point where the function has a peak or trough. In
i relation to the "nearby" values of the function, the top or bottom
| of the peak or trough is the largest or smallest value. It is thus
: referred to as a relative maximum or minimum. Many functions have
| relatlve maxima or minima. In fact, a function can have a relative
maximum or minima without having an absolute maximum or minimum.
Maximum and minimum values are often referred to as the extreme
values of the function or extrema.

The slope of the tangent line to the function is called the
derivative. We find the derivative, see where it is zero, and that
is where the maximum or minimum is. All of this can be done
without actually graphing the functions. The graphs help us
visualize what is happening, but after we understand, they are not
necessary. Now it turns out that finding the derivative depends on
just what kind of function we are considering Sometimes the
process is straight forward, and sometimes it is more complex. We
‘are going to consider several of the stralghtforward rules for
flndlng derivatives:

Athe derivative of a constant

the power rule, : _
the derivative of a sum (dlfference) and
the chain rule. .

O{OOO

- To saVe»tlme, I am not goxng to explaln how these rules are
derived, only how to use them. If you are interested in masterlng
these tOpics, there is probably no better way than to take the
calculus series in the mathematics department.

- .

Something as important as a derivative has to have its own
notation. There are several notational systems for derivatives.
The one we will use is based on the functional notation. If the
function of x is f(x) then we indicate the derivative by writing

£ (x)
“or sometimes simply

£r.

This is read as “the derivative of the function £* or simply
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as "the derivative*

. . E
This 1is the simplest derivative. The derivative of any.
constant 1is 0. We can now take the derivative of any constant

function as you can see here:

Functlon Derivative

f(x) =5 f'(x) =0
Cf(x)y = 12.4 f'(x) =0
Cf(x) = 290 £'(x) =0

f(x) = 376.15 f'(x) =0
Cf(x) = =0

k £ (x)

: Let us consider the graph of the first function which is
plotted in Figure 7. The graph of a constant function is simply a
~horizontal line through the y axis at the point equal to the
constant. The tangent line to the curve is also a horizontal line
at every point of the function. Thus, the derivative ends up being
0 at every value of x and every f(x) is a maximum value; or, if you
‘want to consider it another way, every f(x) is a minimum value.

S o R coT Figure 7 o o o Efj

Graph of a constant function

'f(x)

AN | | £(x) =5

T |

There are other common notations for derivatives. One of
the most common is

dy
dx
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With the power rule we learn how to take the derivative of a
function which is an integral power of x. If f(x) can be expressed

in the general form

n

f(x) = ax
where n is an integer, then the derivative is given by

£'(x) = nax"!.

. To take the derivative you multiply the function by the power and

reduce the power by one. Some examples:

Function : Derivative

f(x) = x frqx) = 1x't = x" = 1
f(x) = x° ‘ frix) = 2x*' = 2x! = 2x
f£(x) = X° £'(x) = 5x'

f(x) = 8x° Frx) = 725

~ The derivative of a sum, or difference, is the sum, or
difference, of the derivatives. You simply take the derivatives of
the parts and add, or subtract.. This is also straight forward:

Function Derivative

f(x) = x + x° frix) = ' + 2x

f(x) = 2x° - X' £r(x) = 6x° - 7x°

£(x) = 4x’ - 9 £'(x) = 12x* - 0 = 12x°

E(x) = 2% +x° - x  £'(x) = 6x? + 2x -1

The chain rule is useful when you have a complex function
which can be simplified by considering it to be a function of a

function. <Consider the function

Flx) = (x + 4)%

This is not a particularly complicated function, but it.does not
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fit any of the patterns we have so far. It is not a constant and
i it is not in the proper form to be a power function. If we define
I two new functions, the chain rule can be applied. The two new
‘ functions are: ' ‘ : . .

uZ

, gf{u)
and
hix) = x + 4.

| What you should be able to see this far is that we can write
! f(x) in terms of g(x) and h(x) where u = hi(x) = x + 4.

f(x) = g(u) = g( h(x) )

g'_( X +4) = (x+ 4)°

. Here f(x) 1is shown to be the composite of outer and  inner
functions. The outer function is g(x); the inner function is h(x)

When we.can see f(x) as the comp051te of two functlons as in this
case, the chain rule is:

If o o -
: f£(x) =gl h(x) ) ., R _
then . ' R _ “ e o
f'(x). = g'( h(x) ) h'(x). ' f )
In words we might say the derivative of'a“cmeOSite'funCEion is the
derivative of the outer function times the derivative of the inner

~ function. "If the function is the composite £(x) = g(h(x)) given
above, then we have

(x* + 8)*

; L | f(x) =
e - £'(x) = 4(x*+ 8)° - (6x° + 0)
’ = 4(x’ +-8)’ - 6%

= 24x°(x° + 8)°

The process is not dlfflcult if you can see the function as inner
and outer functions. Here are some further examples of the use of
" the chain rule:

- Function Derivative
£(x) = (x + x})* £r(x) = 4(x+ x°)° (1 + 2x)
f(x) = (% - x)? | £'(x) = 2(x* - x)1(3x% - 7x°)
fx o= D o0 = 2061060 = 655 U
f(x) = (3x* - 2x® + x)°  f'(x) = 5(3x* - 2x* + x.)"(12x3 - 6x* + 1)




function f(x) = x° - 3x.

15
Finding maxaimum and minimum points of functions

Finding maximum or minimum points of a function can then be
placed in a simple set of rules. The rules given are appropriate
for even more complex functions than we have discussed here You
would simply have to learn more methods of differentiation '

To find maximum and minimum values of a function:

1. Take the derivative of the function.

2. Set the derivative equal to zero and solve the
’ resulting equation for the value of the domain
of the function. Any point found may be a
maximum, a minimum, or neither.
3.

Evaluate the derivative to the left and right
of any points found in step 2. If the
derivative 1is positive to the left of the
point and negative to the right, the function
has a maximum at that point. If the.
derivative 1is negative to the left  and
positive to the right, the function has a
minimum at that point. If the derivative is
positive on both sides or negative on both

sides, the point 1is neither a maximum or a
minimum.

.- The reason for the last step are apparent after a moments
thought. If the derivative is positive to the left and negative to
the right, that means the function was increasing on the left of
the point and decreasing on the right of the point.
up then down, it must have
Similarly,
is

It was going
reached a maximum 1in between.
negative then positive means a minimum was reached. It

left as an exercise to dec1de what both.;pos1t1ve or both

;negatlve values mean

‘Let us see an example of this set of rules. Consider the

The following is the procedure.
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Example of Finding a Maximum/Minimum Value

£(x) = x* - 3x. The original function.
Step 1: Take the derivative.

£'(x) = 2x - 3

Step 2: Set the first derivative equal
to zero and solve for x.
2x -3 =0
2x = 3
x = 3/2

Step 3: Evaluate the first derivative to the left and
right of the point found in step 2.

£ (1) 2(1) -3 =-1

£2) =2(2) -3 = 1

The derivative is negaEiVe to the left and positive to
the right, the function has a minimum at 3/2.

These .same steps will work to find maximums and minimums for many
functions. Textbooks in calculus and mathematical handbooks give

derlvatlves for many common forms of functlons

) E . . ] j . 'S .

: Functions can be defined on two variables. For example, the
area of a rectangle is a function of the length and w1dth of the

rectangle,

This can be written as a function of two variables as
f(l,w) =1-w

Similarly, other functions are deflned on two or more varlables, N
some examples are (;)
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(j) o o E(x,y) (x + 2y)’, and

| f(x,y) (x - y) + 2xy

In order to find minima and maxima of such functions we
| frequently take derivatives of the functions with respect to one

variable at a time. We may take the derivative of the function
with respect to one variable while considering the other variable
to be a constant. This is called taking a partial derivative. The
notation for a partial derivative is.

| of
[ ' , » ox, -

which is read as "the partial derivative of f with respect to x".

When the partial derivative is taken twice with respect to two
different variables, we have two derivatives both of which we set
equal to zero. We then find the simultaneous solution of the two
equations. At the simultaneous solution, we have the maximum value
of the function with respect to both variables.

_ This approach‘can be used to find the least squares regressioﬁ
line. The regression line is an equation of the form

-659 '  | : - , | y' = a + bx

Here, x is an observed value of the independent variable, y is an

! observed value of the dependent variable, y' is the estimated wvalue
| of y, a is the intercept of the regression line and b is the slope
o of the regression line. What we would like to do is find
l estimators of a and b which will give us a best line. Best is
ST usually defined as the least squares line, that is the line which
| will minimize the sum of the squared differences between y and y'.
: The sum of the squared differences is :

Y By -y’
| which can also be written as
'@1 : : - Z(y - a - bx)?
| by substituting for y°'.
L We are used to thinking of this as a function of x and y, but
I we can see this last version can also be viewed as a function of a
and b. We have then

f({a,b) = Z(y - a - bx)?.

(:), : Remember that the sigma notation simply indicates summation and
. -that the derivative of -a sum is the sum of the derivatives. We can
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| thus take derivatives inside the summation and they will add

I If we set these two derivatives equal to zero and solve the
resulting two equations simultaneously, we find the familiar
formulas for simple linear regression’:

o appropriately:
% df = £ 2(y - a - bx)! (-1)
| da , _ ~
ﬁ Jf =T 2(y - a - bx)} (-x).
; Jdb

IXy - LXLY
n
b =
ixt - (Zx)?
.n-

a=y -bx

'The;gompiete;solgtion.of these equations isgianppéndix (:)
A. It would help understanding: of this material
considerably to go over the solution in detail.




Exercise Set 2

1.

Plot the following functions and draw tangent lines to the
curves at

aj

b)

f (x)
E(x)

19

the maximum and minimum points.

2X2 + 4

x' -2x% + 4

Find the derivatives of the following functions.

a)
b)
c)
d)

)

h)

i)

F(x)

£ (x)

£(x)

f(x)
f(a)
f(b)

f(x)

£ (x)

f (x)

2.7182818285

3x

Ix + 4

ex? + ex + &

(y - xa)?

(v - b)z

(v + x* - 4!

8 + ak‘4+ (a - x?)°

3.5x + { a + bx")?

Find the extreme values of. the following functions.

a)
b)

c)

o d)

e)

£ (x)
£(x)
£(x)
f(x)
£ (x)

5 - x f) ffx)

= 5% - 2x + 1
3x - 2 g) f(x) = x* - 4x
X’ . h) f(x) = (x* - x)?
x’ i) £(x) = (X ;‘xﬂz
X - x + 2 ) £(x) = (X - 1)?

What has been found when the first derivative is positive on
both sides of a critical point? negative on both sides?
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Integral Calculus

In integral calculus we find the area under a curve defined by
a function. The process is referred to as integrating the function
or we are said to find the integral. The sign for integration is

We usually write

J f(x) dx

‘to indicate an indefinite integral; An indefinite integral is one

in which we are only interested in finding the formula for- the
area, not an actual area. The dx which appears in the notation is
called the differential. One of its purposes is to indicate the
variable of integration, x in this case. More about the dx later,
for the moment it is enough to simply notice that it is there.

A definite integral 1is one in which we actually want the area.
When we want the area, we indicate the bounds of the area we want
to find. This is indicated by wrltlng the definite 1ntegral with

.the limits for the integral:

E:f(x) ax . o N W
Here, the a is referred to as theilower limit of integration and
the b as the upper limit of integration. This is probably most
easily understood by looking at a drawing. Figure 8 shows the area

of a function between the limits a and b; the area is marked with
dlagonal lines. :

Figure 8>

' Integral of f(x) from the Lower Limit, a,
to the Upper limit, b.

£ (x)
ff(x) dx
a : b _ x

To this point we have seen the notation for 1ntegratlon and(;)
the concept of integration as area under a curve. How we actually
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find an integral is a bit surprlslng Integration turns out to be
the reverse operation of differentiation. In a thorough discussion
we would start by talking about the antiderivative. That is why
differentiation is studied first. What we have to do is be able to
remember what the process for differentiation was and reverse it.
Lets look at what we do when there is a constant.

Integral of a constant
Consider a constant function,
£(x) = k.

“The integral of a function in this form is .

Ik dx = kx + c.
‘By;the power rule, the derivative of a first power'is
| £100 = k. when CE(x)

Whatever constant appears as the coeff1C1ent of a flrst power of X

will. be left as the derivative when the power of .x is reduced by

one to zero. So, when we are integrating and we reverse the
process, we simply put the variable of integration behind the

" “constant.

This explains how where the kx comes from, where does the ¢

- come from? Remember that the derlvatlve of a constant is 0. When

we see a function such as f(x) = k, the 0 which céuld have been
there from a differentiation is not written down. We have to

~remember that it is there and ‘add an unknown constant, c¢. In many
-cases, ¢ will turn out to be zero or to "vanish" from the solution.

Here are some examples:

Well, I was surprised when I saw it. If you have a
normal amount of curiosity, you will wonder how this can
all happen. How does this interesting and tidy
relationship occur between these apparently different
- concepts? Once again, the calculus series in the
mathematics department will answer many of these
questions. < ‘



Function ;ntegrél

f(x).=.l. | | Jil dx.= 1x.=x+c‘.‘

f(x) = 4 .J.4_dx = 4x + C

£(x) = 26 : _J‘zedx = 26x + C

f(x) = 4.3 I4 3dx = 4.3x + c
Integral of a Power

: You will recall that the derlvatlve of a power is taken by
multlplylng the functlon by the powér and then reduc1ng the power
by one. The converse is to increment the power by one and then to
- divide the function by the new power. Equlvalently, we can

multiply the function by 1 over the new power .
_ The formula for the general case 1s. _

C : it - R T R : 6

ne SN
: n+1 i
'Sbme éﬁ-camplés:
Function o 13'1nt:‘ég_ral_ '
£(x) = x ’J'x dx = 1/2 x* + ¢
£(x) = x* _ Jx‘ dx =1/5 x> + ¢
f£(x) = x° - AJ‘xsdx =1/7 ¥ + ¢
£(x) = 3x* '.[3_x‘ dx = 1/53x° = 3/5 x° + ¢
f(x) = 2.1x* = j 2.1xf dx = 1/72.1% = 3%’ + ¢
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- Integral of a sum

As you probably would suspect from knowing the rules for
differentiation, the integral of a sum. 1s the sum of the integrals.

jf:(x) + g{x) dx = [f(x) dx + Jg(x) dx

We can use this with the previous two formulas to find integrals of
some more complex functlons

Function Integral
| 0 o
£(x) = x + 1 x +1dx=Jxdx + J1ax
=1/2x + x+ ¢
£(x) = 5x* + x J‘5x4+1dx>= J.Sx‘dx + dex

= /55« 1/2x +c

x° +..L(2 x?

E-'-i- . [ E- . I I ]

To find the definite integral, we evaluate the indefinite
integral at the upper and lower limits of integration and subtract
the resulting value for the lower limit from the upper 11m1t This.
is easiest seen by example-

. qs : _
Jo xdx =1/2 % + c [0 = [1/2(5)?% + c] - [1/2(0)% + c]
=12.5 + ¢ - [ 0+ c]

_xgh,émlz,s

At the first step in this problem, the vertical line with the
upper and lower limits of integration at the right of the line
indicates that the result is evaluated as the difference between

- the expression evaluated at the upper and lower limits. In other

words, you evaluate the expression at the upper limit and then
subtract the expression evaluated at the lower limits.
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Exercise Set 3

1.

o) dy 172 dx

Plot the following_funCtion'on_graph papef'ahd find the area
between 1 and 3 by counting squares and parts of squares.

f£({x) = 3x

Find the following integral and compare your answer to that of
problem 1. -

3
L 3x dx

Find the folloWing definite integrals,

ia)_Lf % dk

-’;Ils '
by J, 1/2x dx
(10

- .

g8 : :
d) Jy 2%’ - x* + x dx
(10 -

e) Jo x' - 2x’ dx

Jzo
£) J, Sx' -2x dx

[P s«
g) )y 1/5 x ax
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statistics

Bandgm_yariables

A random variable is a number which is associated with the
outcome of an experiment. Random variable can be discrete or
continuous. It is assumed here that you have studied random
variables before and that what is really necessary is to point out
a few random variables, showing some which are discrete and some
which are continuous. Accordingly, examples of both of these are
given after their definitions; ‘

Discrete random variables are random varlables which can take
on a countable number of points. - For example:

° . The number of heads which a coin shows when
tossed one time is a discrete random variable
which can take on two values, 0 and 1.

The number of heads which a coin can show when
tossed 10 times is a discrete random varlable
which can take on values 0, 1, 2, ,.,.; 10 '

“The number of men ‘on a subCommitteé of size.
three which is selected at random from a
committee with fourteen members, including 5

- women, 1is a discrete random varlable whlch can
take on values O 1,2, and 3. ' : :

The 1tem score when a student answers an 1tem on a
‘test is a discrete random variable. taklng on- values
0 or 1. , o

The score which occurs when a student takes a test
of 50 items is a dlscrete random variable whlch ‘can
take on values . 0 1 2, <o 50

ThlS last example may give you some pause 51nce we generally treat
test scores as continuous random variables. We do, - but they
aren't. We usually assume that the continuous distribution is a

good approximation to the distribution of the test score. This 1is

typically a good assumptlon.

Continuous random variables are random variables whlch are
continuous functions as discussed prev1ously The deflnltlon will

-serve for our purposes. Some examples"

o

If an experlment involving heights of first grade



.z{i)

students, the height of first grade students is a
continuous random variable which takes on values on
the interval between 1 foot and 7 feet. (I am
being conservative with the interval because I do
not know the lower and upper llmltS of flrst grade
students height.)

In a study of smoking, the amount of nicotine a
subject consumes in a day is a continuous random
variable which takes on values between 0 and XX
milligrams.

The life of a light bulb is a continuous random variable
taking on values between 0 and an upper limit whlch
depends on the type bulb.

The time a student spends doing homework is a
continuous random variable taking on values between
0 and some upper limit which we w111 not attempt to
spec1fy here.

One of the first distinctions to make in these terms is that.
the terms probability function and cumulatlve probability function

are used to refer to a discrete random variable while- probablllty o
" density functlon and cumulatlve dens1ty function refer to

continuous random variables®. The term probability function refers
to the function which relatés the probablllty of a discrete random
variable to the random variable itself. The cumulative probability
function relates the sum of the probabilities of a random variable
where the sum is taken from the lowest possible value of the random
variable up to the given point. One of the most commonly studied
discrete probablllty functions is the. ‘binomial. The binomial

probability distribution functlon has some interest to us because

it describes the number of success when the answers to a number of

items are guessed.

A blnomlal experiment con31sts of n 1ndependent trials, each
resulting in success or failure. The probability of success on
each trial is p. We are interested in the total number of success’
in the n trials. The number of successes-isﬂthe binomial random

Okay, most authors use the terms in thlS manner. Some
authors' are not too careful, ~ but "you can usually
determine what s happenlng from context.
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variable. The formula for the probabiiity function of a binomial
random variable is ) ’ ' -

b(x;n,p) = C", p* Q""‘.

Here q =1 - p and C", is the number of combinations of n things
taken x at a time. '

If we consider a ten item multiple choice test with 4 choices
per item and we are interested in the number of correct answers
when a student guesses, this is a binomial random variable with P
= .25 and n = 10. Table 2 gives the probability distribution
function and the cumulative probability distribution function for
this binomial random variable. Table 2 1is constructed by
evaluating the formula for the binomial random variable for values
of x ranging from 0 to 10. Those values are placed in the second
column and the second column is cumulated to make the third column.

Other common discrete probability distributions are the
hypergeometric and the poison distributions.



Table 2

Probability Distribution and
Cumulative Probability Distribution function-

for a Binomial Random Variable with 10 trials and P = .25
o Cunmulative.

X P(X = x) Probablllty
0 .0563 : 0563

1 .1877 - .2440

2 ..2816. v .5256

3 .2503 - - 7759 oo
4 .1460 .9219

5 .0548 .9803

6 .0162 .9965-

7 .0029 .9996

8 .0004 1.0000

9 .0000 1.0000
10 .0000 B & 1.0000

©

Continuous random variables have probability density
functions, PDF's. These PDF's are analogous to the probability
distribution functions of discrete random variables. It's the term
analogous that causes the problem here. The problem is further
compounded if we can not go far into a calculus based explanatlon '
Let's see how far we can go.

A density function does not give the probability of the random
variable but, as the name implies, it glves the density. The
density is the height of the curve at any given. value of the random
variable. The density can be used to obtain the probablllty that
the random variable falls within given limits. This is done by
flndlng the area under the density curve between the given limits.
Thus the den51ty is closely related to probability, and we can say
that it - is analogous to the discrete probability distribution
function, but it is not the same.

In introductory statistics courses, areas under the normal
curve are found. Of course the hard part has already been done and
the results tabled. The beginning student simply reads the tables.
The process uses the cumulative den51ty function. The area up to
some limit or between some limits is used. ~In.- other. words, what
you have been doing since that first brush w1th statlstlcs when vo
found normal curve areas is .using a cumulative density functlon
" Table 3 gives the values of the probability density function and
~ the cumulative density function of the standard normal curve ( u =



0, 02 = 1) for selected values of the standard normal dev1ate z.
Table 3

Probability density function and
Cumulative Probability Density function -
for a Normal Random Variable with n =0, g2 =1

Cumulative

X f(x) density function
-3.5 .0009 .0002
-3.0 .0044 . .0013
-2.5 L0175 - .0062
-2.0 .0540 .0238
-1.5 .1295 .0668
-1.0 .2420 .1587
-.5 .3107 - .3085
0.0 .3989 .5000
.5 .3521 .6915
1.0 .2420 : .8413

1.5 .1295 - .9332 ¢ )
2.5 - .0175 | .9938
3.0 - 0044~ ©.9987
3.5 .0009 .9998

In Flgure 9, the cumulatlve den31ty functlon values from Table 3

have been plotted. Notice that the curve approaches ‘but never

- 'reaches the value of 1. The curve is said to be’ asymptotlc"to 1
~and 1 is’ sa1d to be an asymptote of the curve.’

The curve in Flgure 9 is one‘ofrthe main reasons we have been
going through this review of mathematics and statistics. The form

of the curve is what is important to us. The particular form of

the curve, its characteristic ®"stretched out S" shape is what is
noteworthy. That shape, or sometimes a portlon of that shape, is
what is found for many item response curves. ‘As item response
theory-was developed, workers ‘in' the field: attempted ‘to derive

- methods which would yield that curve. Unfortunately, integrating

the normal curve is not a straightforward process. In-fact, simple
formulas for normal curve areas do not exist and normal curve
integrals are only found by approximation. The approximations are
not readily usable in item response theory. No one was able to
derive. any theory w1th the cumulatlve normal den51ty functlon Tt
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was, as mathematicians say, intractable®. So what to do? - Use ?
something else of course; and that dear reader, is the topic of a |
later sectlon

“:Figure‘9 |
| | - |
Plot of the cumulative density function of
the standard normal curve
F(x) - , : o ‘ |
. | |
1. |
-3.0 -2.0 -1.0 0 1.0 2.0 3.0 z |
. |

Since those who developed item response theory were trained in
statistics, it is only to be expected that. they. would want to use
‘the cumulatlve normal distribution to approxlmate ‘a. curve that
looks that in Figure 9. Due to the mathematical dlfflcultles of
working with the cumulative normal dlstrlbutlon, this did not prove
feasible. A second candidate for use proved more ea31ly managed

- .the logistic. cumulative distribution funct10n~'

f(x).‘ka qr :‘ » t ¥ﬁi‘ﬁ;

_ This functlon has the same general shape as that in Flgure ‘9 and it
proved to be much easier to:work with than the cumulative normal
distributign. . The funct1on has become central -in . ltem ‘response
theory. . ;

6 My thesaurus gives these synonyms for intractable:
disobedient, incorrigible,rebellious, uncontrollable,
unmanageable, wunruly, froward, obdurate, - stubborn,
‘uncooperative, uncompromlslng, unsubm1351ve, unyleldlng el
" It's easy to see that they mean the thing isn't going to (:)3'

work easily.



Exercise Set 4

table

AVerify three of the
probabilities on Table 2
by calculation.:

Find f(x)
x's on table 3. Compare
your <results with the

values in the table.

Verify " the : cumulative
probability for x = 3 on
table 3 by comparing to a

' you already know
well. : s
Evaluate the " cumulative
logistic ‘distribution

function on the interval

from -3.5 to 3.5 at every .
~unit and half.unit value.:

Plot the results and
compare to Flgure 9
‘Say if;éf' contlnuous

- probability function . is
the density .

deflned by

function
£(x) = 2x/5, 0 <= x <=5
~a)  Plot £(x) over 'the.

interval [0, 5]

‘b) Use the formula for:

‘the area of a-
triangle.to find the
area  under  f(x)
- between 0 and 1.

¢) Find the integrals
and graph the
following areas.

1
i) J:, £(x) dx

for 3 of the

6.

7.

g e
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ii) J: £(x) dx

.5
111) f(x)'dk

-[s £(x) dx

If you know calculus well
enough (more than we have
done here), use Simpson's
- rule to estimate the area
" under the normal curve
between "z = -3 and
Tz o= =2
estimate?

Agaln, lf you have ‘a good

_j_calculus background find
- the section on the normal
curve in -a ‘mathematical

statlstlcs book such as

those by Hogg " -and Craig "~

‘or Mood and Graybill and
follow the proof .that

=

“X*2g5 = 1

How good is the




O
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To the beginning student in statlstlcs,'lt seems logical to |
estimate the population mean with the sample mean; the population
variance with the sample variance; and so on. To the mathematical
statistician, these estimators cry out for a- nethodology which
justifies their use and will yield estimators when the case is not
so obvious. Mathematical statisticians look for a procedure which
will yield an estimator. For example, in simple linear regression
how does one obtain the estimates of the slope and 1ntercept i

- These estimators are not at all obvious as the- sample mean is an |
obv1ous estlmator of the populatlon mean.

The slope and 1ntercept in s1mple regre551on are found by the
least squares approach’. The least squares approach is a procedure |
which ylelds estimators which minimize the squared distance between 1
‘the estimate and the thing estimated. Mathematlcal statistics uses
many least squares estimators and there is a falrly standard manner
of finding least squares estimators. When a new parameter is

, defined and it 1is desired .to . estimate that parameter, a
”mstatlst1c1an can follow the least squares procedure to see 1f an
_iestlmator can be derlved. P -

Another common procedure for f1nd1ng an estlmator is the(E??
method of maximum likelihood.. . In this procedure,_a llkellhOOd
“function is deflned and then the maximum value of- the function is
found for some given sample data. The values whlch maximize the
likelihood function are referred to as max1mum llkellhOOd
estimators. : ‘

» Sometimes the least squares estlmator and the maximum
likelihood estimator are identical; -as when it is desired to find
- an estimator for the mean. Sometimes these estimators differ, as
when it is desired to find an estimator for the variance. Other
criteria are also important in:selecting an estimator. Is the
“estimator consistent? Does it have minimum variance? These and
other cr1ter1a are among the methods used to select estlmators

Maximum likelihood estimators are frequently easy to f1nd and
make good examples because of the ease of the theory. First we
must define a likelihood function. Say that we have a random '
sample of size n from some distribution of known form. The ‘
likelihood function is the product of the n terms that result when |
the distribution function is evaluated at each observation in the
function and each of these is multiplied together.

- , _ : B ATt R . C ]

"  See Appendlx A for the derlvatlon of the least squares _(;)31
estimates of the slope and intercept of a simple llnear regre551on =
line. ,




T Let's see the motivation for this deflnltlon ' Since the n
observations are random, they are independent. - Independence of two
random variables means that the joint probability function of the
two random variables is the product of the probability functions of
the two random variables. Thus, due to the independence, the
probablllty of the joint occurrence of 2 of these observations is
given by this product of the distribution functions. The argument

- extends to the general case of n random variables. :

A particulary easy maximum likelihood estimator to find is the |
maximum likelihood estimate of the mean in a normal distribution.
Remember the equation of a normal curve is

) -_.l(ﬂ)z
f(x) = —2— e 2 ©
J(2no?)
If we have a sample of x1, X,, ... X,, then the likelihood function

is the product of the normal distribution evaluated at each.of
these observations. If we label the likelihood function L, we have |
‘ . 1, Xm 2 X ol w2t ' ' . Lot e
‘L= 1 o ERNCR BRSNS S, 7% SIS LI 2

e '_ | - f@ndh J@2my 1/?2:1’02) | o I

Notice ‘that this is the product of n terms, one term for each of-
the n observations in the sample. Further notice that éach term
consists of the product of a fractional constant and a power of e.
Since there are n constant fractions we can gather them together .
and use an exponent to sunpllfy the expre551on :
T B : 1 X -u 2 1, X2 . 1, X,u 2
‘ L= ( TR Sl St 2T

_ ) e e © A
\/chr_z ' 4 .

- Next, we notice that the powers of e can be comblned by addlng the
exponents so that we obtain: . .

1 1 Xpm 2 1, Xm 2 : . ‘
1 n St ) -5t e A |

T NQw, to flnd the max:Lmum llkellhood estlmator of u,(we have to
Q makximize this function with respect to p. With. our meager 1
knowledge of calculus, this looks llke a formldable task, untll we w

| |




e
learn the tricks ( Yes, two genuine tricks to make life easier).
We reason thus: . . _

First, the fractlonal constant can be dropped
since the function w1ll be max1mlzed with or
w1thout the constant

Second, if L is to be maximized, then the
logarithm of L will also be maximized. Why
not- take: the logarlthm of L and max1m12e that.

First, we drop the constant leaving
‘ 1.x,fu2

2
. '—2-(_) __]_(le.l) -
L= e ? °

[ %4

Next we take the logarithm. Obviously, this will be easiest if we
use natural logarithms:: ' : T . . :

- 1, %12 1 x-n? 1 ’ |
1n(L) = -= —— T e e . TS .
(D) = mg =) 2'( SR .20 e
“ | 1 o x-u2 1 ox-p 2 g 2
£ = Ll B y - . . --
e A i A >

- Agaln the functlon w1ll be max1muzed 1f we factor out the fractlon
R -% and delete it for ‘a constant multlpller w1ll not change the
maximum of the function. 3
2 -y 2. ' -
: X, 7K X"B “ X.7H
£) = (——) (=) v v (e

or

~ X 2 x 2 X 2 ;
flu) = { _1—.2) + (_Z-ll_) + . . .+ (_“-E) |
c O g O g g O

\

\

~ - “The derlvatlve w1th fespect to u 1s then ea51ly found by the chaln(:)
rule , _ : _ RIS




We set the derivative equal to zero and factor out ‘the constants:

Then we multiply both sidés by -02/2 to remove.the constant

(X,-H) + (X,-p) + . . .+ (x-p) =0

Rearranging terms we have

np = X,

8

B = Ix;/n

Which is the maximum likelihood estimator for u. .
In this case, we would obtain the same estimator if ‘we sought
the least squares estimator. The maximum likelihood estimator and.

the least squares estimator sometimes produce the same estlmate and
sometimes do not produce the same estimate.




,Exercise Seﬁ 5

1. State the form of the
’ probability distributions
functions for each of the v : N
discrete random variables o _ \

on page 26. -

2. Describe the procedure
for obtaining a maximum
likelihood estimator.

3. Reread the section on
finding the -  maximum
likelihood estimator of
the mean, then take the
likelihood function in
its final form, take the
derivative, and find the

estimator. In - other
words, find the maximum
"likelihood estimator

beginning at the pointgp_j,f

 f(u) £ﬂ+u§/d-u/o)Lkug/dfu/053+§;«{hg/o4u/d)3A. R efbf
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o IMPORTANT TERMS ' :
~You should watch for these terms in the text and be sure you
understand them.. ' : .

abscissa

calculus

concave down

concave up

concavity

continuous function
continuous random variable .
cumulative density function
cumulative probability function
density function

definite integral -
dependent variable
derivative

differentiate

differential calculus
discrete random variable
‘domain

extrema

e

function ,

indefinite 1ntegral

- independent varlable
integral .

integral calculus
irrational number.

‘least squares estlmator
logarlthm

maximum likelihood estlmator
ordinate .
probability functlon'
‘random variable

range
rational number
real number
relative maximum
. relative minimum .
tangent line
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.Appen@ix A

Finding least squares estimators for simple linear regression.

The regression line is an equation of the form
y' = a + bx .

‘Here, x is an observed value of the 1ndependent variable, y is an.
‘observed value of the dependent variable, y' is the estimated value
Qf Yy, a is the intercept of the regression line and b is the slope
of the regression line. What we would 1like to-do is find
estimators of a and b which will give us a best line. Best 1is
~usually defined as the least squares line. The least squares line
.is the line which will minimize the sum of the squared differences
between y and y'. The sum of the squared differences is

Sy - v")?,

'fﬁhich can,also be written as ' : [- - S L
5z?(y—'a"-b:i<‘):2. o R 6
'We'waht to minimize this shm of squares Th1s is where the -
name for the "least squares approach“ comes from.
.We are used to thinking of this quantity to be.minimized,
Iy - a - bx)?, |

as a functioh of x and y; but we can see thlS last wversion can
also be viewed as a function of a and b. We have then

f(a,b) = E(y - a - bx)?
Remember that the 51gma notation simply indicates summation

and that the derivative of a sum is the sum of the derivatives. We
¢an thus take derivatives inside the summation and they will add

appropriately:
I =% 2(y - a - bx)' (-1)
da |
=% 2(y - a - bx)" (-x). » L :

| O

If we set these two derivatives equal to zero and solve the




resulting two'equations simultaneously, we find: - |
L 2(y - a - bx)! (-1) =0 - Partial with respect to af

, | e : - |

T2(y -~ a - bx)! (-x) =0 Partial with respect to b. k

|

-2 (y -~ a - bx) =0 Move constanté outside 22

\

-2 (y - a -bx) (x) =0 Move constants outside ¢ .|

|

|

a
2 (y - a - bx) =0 Divide by -2. %
T (y - a - bx) (x) =0 Divide by -2. |
Iy - Za - Ibx =0 Distribute T. ;
!
_ L : . :
I (xy - ax - bx’) =0 Multiply through by x. = |
: - SR -~ Zy - na - Ibx =0 Summation rule. i
~ ' | g IXy - Zax - Ibx®*-= 0- - Distribute x. ?
Equatidn 1: Iy - na - bzx . =0 Move constant outside Z.
Equation 2?/ Xy - aEx - bEx =0 - Move constant outside'z
. - We .now solve the Equatlon 1 for a and substltute that’ result for a in
R ' Equation 2 and solve the resultlng equatlon.
Iy - na - bzx 'v é 0 : Equatlon 1.
na = Iy - bIx Move terms across equal
. - sign. : o
o .
a = {3y - bix) - Divide by n.
-

Substituting this result for a into Equation 2 we find:
IXy - aix - brx? = 0 Equation 2.

_ : : \
Ixy - {2y - DEX)ITX -~ be?, ~= 0., 8ubstitution... .. - o

'ixy -_ZXTy - DEXEX - bix? = 0 Remove parenthesés.




b( 5x? - (Zx)%) = Txy - IXIv
n n
~ IXy - ZXIY .
n
b =
ix’ - (=x)?
n

This is the solution for the slope, b.
.can take equation 1 and solve for a.

e By S na - bIx =
Iy -a -bix =
n n
a=2‘.¥-bzx

n n

Recognizing the -formulae for y and x,

.~ . Tas:

— —

a=y - bx

0.

0

(Mo
Separate fraction into

two fractions

Move terms across equal
sign. '

Factor b out of two terms .

Divide both sides by
ol . 12x)°®

n

To find the solution for a wb

et g

Divide by n.

Move'termsvaCrOSS_equal
sign. S

we can rewrite the last equation
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