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For complete understanding of Item Response Theory, you shoulq-} 
probably have a good knowledge of a number of topics generallY-, 
covered in calculus and mathematical statistics Courses. There are 
those who seem to do quite well in IRT without knowledge of these 
topics but I feel that it must be quite difficult for them at some 
times. 

The intention in this writing is to give you enough of these 
topics to remove some of the mystery from IRT models. These topics 
will be review for some of you and introduction for others. It is 
almost impossible to do justice to the topics in any short time 
period. My hope is that when the topics come up in the study of 
IRT, you will feel comfortable with the concepts. 

Assumptions made for this writing are that you have had an 
algebra course some time in your life, and that.you have had at 
least an introductory course in statistics. If you do all the 
exercises, you should feel more comfortable reading item response 
theory than you would if you had not done them. 
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ALGEBRA 

Everyone probably remembers most of the algebra necessary for 
item response theory. This is because you have already been in 
enough statistics courses to keep at least some of your knowledge 
of algebra reasonably current. Some infrequently used areas are 
also essential: exponents, logarithms, and e. These are discussed 
here. 

Extlonents 

The following rules regarding exponents are usually covered in 
a high school algebra I class. 

1 1 yX-vl. = -- and X = y X-vX

pX.pY pX+Y2. = 

3. pX/pY = pX-Y 

$ 4. pX'Qx = (PQ) x 

There isn t much to do for these but memorize them. SomeI 

explanation of why they mean what they do will be given in class. 
The best approach to memorizing the rules is to work lots of simple 
problems like those in the set of exercises following these first 
few sections . 

. 

',.. Logarithms 

One of the first things to learn about logarithms is that 
there are different systems of logarithms which have different 
bases. In general, two systems of logarithms cannot be mixed 
without conversion from one to the other. There are formulas for 
converting from one base to another, but these are not partIcularly 
useful to us because we, will only work in one base. When 
logarithms are being used, the user must know what base is being 
used and not mix bases. This initial discussion will assume a base 
of 10. When 10 is used as the base we use the term conunonI 

logari thms I • 

I The logarithm of the number, x, is a number, m, such that
 
I
 

I 10" = x. o In other words, the logarithm of x is the number, m, which when 10 
is raised to the m power gives us x. The logarithm of 10 is 1 

I 
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because 
10 1 = 10. 

The logarithm of 100 is 2 because 

102 = 100. 

The logarithm of 100000 is 5. 

what is the logarithm of 1000000000000000? 

When base 10 logarithms are used it is customary to indicate this 
by either writing 

log10 (X) or simply
 

log (X) .
 

We can thus write: 

lOg10 (l00) = 2, and 

log (l000) = 3 . 
r>. 

Since logarithms are exponents,' they have the properties of\....} 
exponents. Rule 2 of the section on exponents says . 

pX.pY pX+Y= 

This fact can be used to do multiplication by taking the logarithms 
of the numbers to -be multiplied, adding the logarithms, and then 
raising the base to the sum of the logarithms. We are using rule 
2 from the section on exponents. For example if the product 

100·1000 

is needed, one can notice that 

log(100) = 2, and 

log(lOOO) =3. 

Thus, 100-1000 = 102 
+ 
3 = lOS = 100000. 

Similarly 

log(57) = 1.7559 
log(18) = 1.2553 

0112 ()thus 57·18 = 101.7559 + 1.2553 = 103 
• <= 1026.1 
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Other bases rather than 10 can be used for logarithms. In some
I applications, base 2 or base 16 is convenient. In statistics and 
i
\ measurement, as in much of natural science, the constant 

e = 2.718282 ... 

is convenient to use as a basel. The logarithms using e as a base 
are often referred to as 'natural logarithms' or 'Naperian 
logarithms' after the Scottish mathematician John Napier who is 
credited with the discovery of logarithms. When base e is used, 
the- customary notation is 

loge(x) or 

In(X) 

This latter notation, In(x), is the notation preferred by most 
authors and is the notation to be used here. 

In most measurement or statistical applications the natural 
logarithm is used because many formulas and theories take their 
simplest form using natural logarithms. 

Ef 
Logarithms show up in statistics and are often useful by being 

another way to do multiplication. Sometimes taking logarithms can 
greatly simplify theory. This usually happens as a result of 
moving from multiplication to addition. The theory is then made 

I more pliant because addit~on is simpler than multiplication. 

The natural logaritbm base. e 

The natural logarithm base, e, is a constant like n which 
occurs frequently in mathematics, statistics, and the natural 
sciences. Also, e frequently appears in scientific models when 
logarithms are not being used. The number may be found by taking 
the following limit as n approaches infinity. 

limit (1 + 1/n)n 
n -- 00 

For n from 1 to 10 the term (1 + I/n)n evaluates as given in Table 
1. 

4 1 The next section discusses e, the base of natural 
logarithms. 

i 

I 
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Table 1 

First ten terms of a sequence with e as the limit. 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

As you can see in Table 

II(I + lin)" 

2. 
2.25 
2.37037 
2.44140 
2.48832 
2.52162 
2.54650 
2.56578 
2.58117 
2.59374 

I, the value of the expression gets 
larger as n gets larger. However it is a case of "diminishing 
returns" and there is a limiting value to which the expression will 
come arbitrarily close and never exceed. The limiting value (to 10 
de<;imqlplaces) of the- series is 2.7182818285 and is USUallye 
wr1tten as e. . 

. . . This. number appears, among other places, in the equation for 
the normal curve: 

1 - -21 (_x-_Il ) 2 __-=-- e af{x) = 
J(2ncr2 

) 

This equation gives the height of the normal curve at x when the 
curve has mean 1l. and standard deviation cr. If the curve is a 
standard normal curve, mean 0 and standard deviation I, we write 
f{z) instead of f(x) to indicate this and the function reduces to: 

1 2 
1 --z 

f{x) ... - e 2 

{f2llf 

.. 
This is the version which is tabled in normal curve area tables. ( ) 

~~ 
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Exercise Set 1 
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1.	 Use the exp, inverse in, 5 . Use the natural logarithm 
or similar function on a functions on a hand 
hand calculator to find calculator to find the 
the value of' e. Give following products (Find
directions for doing this the logs, add them, raise 
on your calculator. e to that power.). Check 
(Remember, e 1 = e.) your work by regular 

multiplication. 
2.	 Make a table s irnilar to 

Table 1 by using a hand a} 87 . 19 = 
calculator to evaluate 
the expression (1 + lin)" b) 126 . 43 = 
for values of n from 10 
to 100 in increments of c) .00234' 145 = 
10,· from· 100 to 1000 in 
increments of 100,and d) 135' 35.26 = 
from 1000 to 10000 in 
increments of 1000. (If e) .0145' .00035 = 
you know a programming 
language, this is 
probably even .e~s ier to 6. Simplify the following 
program than to do on a expressions:e	 hand calculator.) How 

1 a) 2'X4close to the valuegiven X = 
(to 10 decimal places) is 

I	 X4/X2 
I the final answer?	 b) == 

!	 X2/X43.	 Use the ~n function on a c) = 
hand calculator to find 
the natural logarithm of d) X3 . y 3 =-I 
2.7182818285. Write 

--- ...~- I: directions for doing	 e) . XY'Xl: == 
1 this. 

y5. y8 
\	 

f) == 
4.	 Find the natural

1 

X8/X 12 logarithms of the g) ==
 
following numbers with a
 

I calculator. h) X2 . 5·X 
==
 

i a) 2.
 
b) 7.389056099
 

I, c) 10 7. Calculate the height of 
d) 100 the standard normal curve 

.1
:1 

e) 374 at z = O. 
I 

·1 

f) 32.1889
 
I g) 5.36668
 
I} 

q 
,I 

I 

I 
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Calculus 

In most mathematics departments, calculus is taught 1 hour per 
day, 5 days a week, for an academic year. This fact causes me to 
hesitate as I write this. Just how much can you be reasonably 
expected to know and understand after the short instruction you 
will have here? What misconceptions will you have after I omit so 
much in order to get at the little that we can use in item 
response theory? After posing these questions, I took my hands off 
the keyboard and thought about this for some time. I could not 
come to an answer. Let's take that as a warning, dig in, and see 
how well we can do. 

Two main branches of calculus are differential calculus and 
integral calculus. In differential calculus the slope of a tangent 
line to a curve is found. In integral calculus, areas under curves 
are found. Differential calculus is studied first since, as we 
will see, it logically precedes integral calculus in the theory. 
Both branches of calculus consider continuous functions, so we 
start with functional notation and continuity. . 

··Functions ,,--.... 

o 
You probably remember graphing equations in introductory 

statistics classes. Figure 1 A graphs the linear equation 
y = 2x +1 . 

Figure.1 

x/y Notation and Functional Notation 

A 

Graph with 'v: not.a t i.on 

B 

Graph with functional 

y = 2x + 1 

x 

f(x) 

notation, 

= 2x + 1 

x 

f(x) 
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in Figure 1 A, you see y plotted on the vertical axis, the 
\ ordinate, and x plotted on the horizontal axis, the abscissa. it 

is common to refer to y as a function of x. This is in the sense1 

I that the value of y is dependent on the value of x. Another common 
terminology is to refer to the variable on the horizontal axis as 
the independent variable and the variable on the vertical axis as

I the dependent variable. 
! 

We usually indicate the functional relationship as f (x) . 
Figure 1 A could be relabeled as in Figure 1 B with f(x) replacing 
y. Here, y and f (x) are synonyms. The f (x) notation is used 
because it makes it evident that a functional relationship exists 
and because it has certain ease of use advantages which will become 
apparen~ as we use the notation. . 

Functions are very formal and important relations in 
mathematics. Functions are assignments or rules for pairing of 
elements in one set with elements in another set. The first set is 
called the domain of the function, the second set is called the 
range of the function. The function is said to be a mapping from 
one set to the other set. This is illustrated for the function 
f(x) = 2x +1 in Figure 2. 

* 

e , 

Figure 2 
-j 

Functional Relationships 

Domain 

2 

4 
~ 

6 
:, 
8 

Range 

1 
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The rule for assigning an f(x) value to a given x has only the 
restrictions that 

a) each x in the domain 
in the range. 

must be assigned a value 

b) each x in the domain can only be assigned one 
value in the second set. 

It is usually important that the domain and range of a 
function be well defined. The definitions of the domain and range 
are frequently implicit in the definition of the function and are 
thus not always discussed. For the functiony = 2x + 1, both the 

'domain and the range are the real numbers. Frequently,the domain 
of the function is restricted. The function f (x) = ./x has the 
domain of all nonnegative real numbers which restricts the domain 
of the, square root function to zero and positive real numbers. 

Continuity 

Much of what can be done in calculus and other areas of higher 
mathematics is dependent on having continuous . functions. 
Intuitively, a cont.i.nuous function is one in which there are no 
holes. Consider an arbitrary smooth curve as illustrated in Figure~. 
3 A. If we remove one point from the curve, and move it up (o~ 
down)· the function is no. longer continuous due to the gap at that 
point. This is shown in Figure 3 B. . . 

Figure 3 

Graphs of Continuous and Discontinuous Functions 

A B 

Continuous Function Function with discontinuity at a 

f (x) f (x) 

• 

. /~ 

x a x 

D~scontinuo~s fun~ti?ns cause problems.when working .at or near~ 
the po i.nt; of. d.i s cont.Lnui.cy , The "gap" a n the f unct Lon causes : 
problems with finding limits of the function of x. Considering 



9 o limiting values is frequently what is done in calculus. Thus the 
restriction to continuous functions. Figure 4 shows some 

I

I ,additional functions with a point of discontinuity 

Figure 4 

I 

Graphs of functions with d~scontinuities 

f(x) f (x) f(x), ­
/\ /\/ 

x x x 
. 

Differential Calculus 

Consider Figure 5. In that figure, an arbitrary functions~. has been drawn. The first has a maximum value. The second has a 
minimum value. Functions which might look like this are 

f(x) = _x 2 + lOx -25 
and 

2f (x) = x + 5 

"' .'~ Figure 5 

I
 

I
 

I 

\ 

i 

I 
I 
I' 
I 

I 

;[ 

B 

f (x) 

x 

Function with a minimum value 

A 

x 

f (x) 

Function with a maximum Value 

q
 
I 
I 

I 
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Simple functions similar to this can represent some very 
important concepts. They could represent the height of an artillery 
shell x minutes after leaving the cannon; the yield of a chemical 
process as the temperature, x, is raised; or (nota bena) as in 
Figure 5 B the sum of the squared differences between actual and 
predicted values in a regression problem. Someone investigating 
these functions might well want· to know where the maximum or 
minimum value occurs. For what x is f(x) the greatest, or least, 
value? At w~at time does the artillery shell reach its highest 
point? At what temperature does the chemical process result in the 
maximum yield? Where does the minimum sum of the squared error 
terms occur? 

You might suggest that all· one needs to do is draw the graph 
and find the maximum by looking at the graph. That works for some 
simple cases, ' but as the functions grow more complex it turns out 
to not be very satisfactory. An analytic approach is necessary, 
one which yields an equation or formula which provides the answer. 
Figure 6 illustrates the approach~ Notice that the tangent lines 
to the curve at the maximum and minimum are horizontal with a slope 
of zero. 

Figure· 6 e 
Tangent Lines to functions 

f (x)f (x) 

~~ 
x x 

Tangent lines are drawn to the function. Then the slope of the 
tangent line is found. Next, reason that when the slope is zero, 
the tangent has been drawn at a maximum or minimum value. Solution 
found. Well, not quite found. First problem: is it a maximum or 
a minimum? Next problem: some functions have more than one peak, 
won '.t there be a tangent line with a zero slope at more than one 
.poi.nt ? The time it takes to answer to these and other questions is .. 
one of the reasons that l;:a)..culus is studied for a year. 

I 

0 
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One complication we do need to clear up is that of a r~lative~ maximum or minimum. It is possible for a function to have more 
I 

than one. point where the function has a peak or trough. In 
relation to the "nearby" values of the function, the top or bottom 
of the peak or trough is the largest or smallest value. It is thus 

I 
~~ferred to as a relative maximum or minimum. Many functions have 

I
I	 relative maxima or minima~ In fact, a function can have a relative 

maximum or minima without having an absolute maximum or minimum. 
Maximum and minimum values are often referred to as the extreme 
values of the function or extrema. 

The slope of the tangent line to the function is called the 
derivative. We find the derivative, see where it is zero, and that 
is where the maximum or minimum is. All of this can be done 
without actually graphing 
visualize what is happening, 
necessary. Now it turns out 
just what kind of function 
process is straight forward, 

the functions. The graphs help us 
but after we understand, they are not 
that finding the derivative depends on 
we are considering. Sometimes the 

and sometimes it is more complex. We 
.are going to consider several of the straightforward rules for 
finding derivatives: 

o .the derivative of a constant, 
o the power rule, 
o the derivative of a sum (difference), and 
o the chain rule. .. .	 . .~. 

To save	 time, I am not going to. explain how these rules are 
II·	 derived, only how to use them. If you are interested in mastering 

these topics, there is probably no better way than to take the 
\	 

calculus series in the mathematics department. 
i 
I 

\ Some nOtation 
-I-- I

I Something	 as important as a derivative has to have its own 
·1 

i	 notation. There are several notational systems for derivatives. 
The one we will use is based on the functional notation. If the 
function ofx is f(x) then we indicate the derivative by writing

1 

f ' (x) 
\ 

or some'times simply 
\ 

!	 fl. 
\ 

I 

\ 

This is read as "the derivative of the function f" or simply

d
I 
\ 

!
 
I
 
I
 

1 
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Figure 7 , Ie 
Graph of a constant function 

f(x) 

-;.­ f (x) = 5 

S I 

I x 

Deriyatiye of a constant 

This is the simplest derivative. The derivative of any 
constant is o. We can now take the derivative of any constant 
function as you can see here: 

Function Derivative 

f (x) = 5 f I (x) = 0
 
f (x) = 12.4 f I (x) = 0
 
f (x) = 290 f' (x) = 0
 
f (x) = 376.15 f ' (x) = 0
 
f (x) = k . f I (x) = 0
 

Let us consider the graph of the first function which is 
plotted in Figure 7. The graph of a constant function is simply a 

. horizontal line through the y axis at the point .equal to the 
constant. The tangent line to the curve is also a horizontal line 
at every point of the function. Thus, the derivative ends up being 
o at every value of x and every f (x) is a maximum value; or, if you 
want to consider it another way, every f(x) is a minimum value. 

2 There are other common notations for derivatives. One of 
the most common is 

~. 
dx o
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. Power rule 

with the power rule we learn how to take the derivative of a 
function which is an integral power of x. If f(x) can be expressed
in the general form 

..,~
 

f (x) = ax"
 

where n is an integer, then the derivative is given by 

f' (x) = nalx"-l. 

To take the derivative you multiply the function by the power and 
reduce the power by one. Some examples: 

Function Derivative 

. f (x ) = x f 1 (x) = 1X1
-

1 = Xo = 1 

f (x) = x 2 f 1 (x) = 2X2
-

1 = 2x1 = 2x 

f (x) = x-
c 

f (x) = 5x4 
1 

f(x) = 8x9 f I. (x) . = 72x8 

e 
Deriyatiye ofa sum 

THe derivative of a sum, . or difference, is the sum, or 
difference, of the derivatives. You simply take the derivatives of 
the parts and add, or subtract .. This is also straight forward: 

Function Derivative 

f (x) = x + x 2 f I (x) = 1 + 2x 

f (x) = 2x3
_ x 7 f 1 (x) = 6x2

- 7x6 

f (x) = 4x3 
- 9 f 1 (x) = 12x2

- 0 = 12x2 

f (x) = 2x3 +x2
- x .f I (x) = 6x2 + 2x -1 

.""'.... 

Chain rule 

The chain rule is useful when you have a complex function 
which can be simplified by considering it to be a function of a 
function. Consider the function 

-."'" .1 

f(x) =(~ + 4)2.o This is not a particularly complicated function, but it. does not 
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fit any of the patterns we have so far. It is not a constant and 
it is not in the proper form to be a power function. If we define 
two n~w functions, the chain rule can be applied. The two new 
functions are: 

g (u) = u 2
 

and
 
h(x) = x + 4.
 

What you should be able to see this far is that we can write 
f(x) in terms of g(x) and hex) where u = h(x) = x + 4. 

f(x) = g(u) = g( hex) = g( x + 4 )= (x + 4)2 

Here f (x) is shown to be the composite of outer and· inner 
functions. The outer function is g(X)i the inner function is h(x) 

When we.can seef(x) as the composite of two functions as in this 
case, the chain rule is: 

If 
f(x) =g( hex) ) I 

then 
f • (x) = g' ( h (x) h ' (x) . e 

In words we might say the derivative ofa corilposite'function is the 
derivative of the outer function times the derivative of the inner 
function. If the function is the compositef(x) = g(h(x» given 
above I then we have: ' . 

f (x) .(x6 + 8) 4= 
~...:. f' (x) = 4 (x" + a») . (6xs + 0) 

4 (xs +. 8)"] . 6xs = 
24xs (xs + 8»)= 

The process is not difficult if you can see the function as inner 
and outer functions. Here are some further examples of the use of 
the chain rule: 

Function Derivative 

f (x) (x + x ) 4 f' (x) = 4 (x + x ) "] (1 + 2x)= 2 2 

7f (x) = (x3 _ x") 2 f' (x) = 2(x) - X ) 1 ( 3x 2 
- 7x 6

) 

f(x) (x) 2 f' (x) = 2 (x) ) 1 (3x2
) = 6x

5 = 
f (x) = (3x4 

- 2x3 + x)s f' (x) = 5 (3x4 
- 2x3 + x) 4 (12x3 

-, 6x2 + 1) 
0 
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 Finding maximum and minimum ooints of functions 

Finding maximum or minimum points of a function can then be 
placed in a simple set of rules. The rules given are appropriate 
for even more complex functions than we have discussed here. You 
would simply have to learn more methods of differentiation. 

To	 find maximum and minimum values of a function: 

1.	 Take the derivative of the function. 

2.	 Set the derivative equal to zero and solve the 
resulting equation for the value of the domain 
of the function. Any point found may be a 
maximum, a minimum, or neither . 

.
' 
3.	 Evaluate the derivative to the left and right 

of any points found in step 2. If the 
derivative is positive, to the left of the 
point and negative to the right,the function 
has a maximum at that point. If the 
derivative is negative to the left, ande
 

' 
i
I

i 

j 

\ 

I
I	 

,

" 

positive to 'the right, the function has a 
minimum at that point. If the derivative is 
positive on both sides or negative on both 
sides, the point is neither a maximum or a 
m1n1mum. , 

The reason for the last step are apparent after a moments 
thqught~ If· the derivative is positive to the left and negative to 
the right, that means the function was increasing on the left of 
the point and decreasing on the right of the point. It was going 
up then down, it must have reached a maximum in between. 
Similarly, negative then positive means a minimum was reached. It 
is left as an exercise to decide what both positive or both 

'negative values mean.	 ' •. 

Let us see an example of this set of rules. Consider the 
function f(x} = x2 

- 3x. The following is the procedure. 

·t~ 

q1 

! ' 
i
I

i 
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0Example of Finding a Maximum/Minimum Value 

f(x} = X 
2 

- 3x. The original function. 

Step 1: Take the derivative. 

f ' (x) = 2x - 3 

Step 2:	 Set the first derivative equal 
to zero and solve for x. 

2x - 3 = 0 

2x = 3 

x = 3/2 

Step 3:	 Evaluate the first derivative to the left and 
right of the point found in step 2. 

f' (1) = 2(l} - 3 = - 1 

f'(2) = ~(2).: 3 = 1 

e 
The derivative is negative to the left and positive to
 
the right, the function has a minimum at 3/2.
 

These.same steps will work to find maximums and minimums for many 
functions. Textbooks in calculus and mathematical handbooks give 
uerivatives for many common formS of functions. 

Partial derivatives 

Functions can be defined on two variables. For example, the 
area of a rectangle is a function of the length and width of the 
rectangle, 

A=l·w. 

This can	 be written as a function of two variables as 

f (1., w) =	 1 . w • 

Similarly, other functions are defined on two or more variables, o 
some examples are 
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f (x , y) = (x + 2y) J, and 

f(x,y) = (x - y) + 2xy . 

In order to find minima and maxima of such functions we 
frequently take derivatives of the functions with respect to one 
variable at a time. We may take the derivative of the function 
with respect to one variable while considering the other variable 
to be a constant. This is called taking a partial derivative. The 
notation for a partial derivative is 

d.f. 
ax, 

which is read as ·the partial derivative of f with respect to x·. 

When the partial derivative is taken twice with respect to two 
different variables, we have two derivatives both of which we set 
equal to zero. We then find the simultaneous solution of the two 
equations. At the simultaneous solution, we have the maximum value 
of the function with respect to both variables. 

This approach can be used to find the least squares regression 
line. The regression line is an equation of the form 

y'= a'+ bx . 

Here, x is an observed value of the independent variable, y is an 
observed value of the dependent variable, y' is the estimated value 
of y, a is the intercept of the regression line and b is the slope 
of the regression line. What we would like to do is find 
estimators of a' and b which will give us a best line. Best is 
usually defined as the least squares line, that is the line which 
will minimize the sum of the squared differences between y andy' . 
The sum of the squared differences is 

E (y _ y') 2, 

which can also be written as 

E (y - a - bx) 2 

by substituting for y'. 

We are used to thinking of this as a function of x and y, but 
we can see this last version can also be viewed as a function of a 
and b. We have then 

f(a,b) = E(y a - bx) 2. 

Remember that the sigma notation simply indicates summation and 
,"that t he derivative of va sum is the sum of the derivatives. We can 

I. 



10 
thus take derivatives inside the sununation and they will add 
appropriately: 

i2f. = I: 2 (y - a - bx) 1 (-1) 
aa 
i2f. = I: 2 (y - a - bx) 1 (-x).
ab 

If we set these two derivatives equal to zero and solve the 
resulting two equations simultaneously, we find· the familiar 
formulas for simp.le linear regression): . 

., 

e 

"
 

) Th€9QmpletesolU:tion of these e~atiQns is.:inAppenC:ix 0-' 
A. It would help understand1ng, of th1s .mater1al 
considerably to go over the solution in detail .. 
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i Exercise Set 2 
i 

b) f (x) = x ' -2x2 + 4 

2 . Find the derivatives of the following functions. 

a) f (x ) = 2.7182818285 

b) f (x) = 3x 

c) f(x) = 3x +4 

d) f (x) = ex2 + ex + e" ," 

e) f(a) = (y _ xa) 2 

f) f(b) = (y _ b) 2 

, g) f (x) = (y + x 2 _ 4X5 ) 4 

~ h) f (x) = 8 + ax" -+ (a - x 2 
) 2 

I 

i) f (x) = 3.5x + ( a + bx") l 

3. Find the extreme values of the following functions. 

a) f (x) = 5 - x f) f (x) = 5x2 
- 2x + 1 

c--; 

b) f (x) = 3x ~ 2 g) f (x) = Xl - 4x 

c} f (x) = x 2 h) f (x) = (x2 _ x) 2 

d) f (x) = Xl i) f (x) = (x) - x2 ) 2 

! 
I 

e) f (x) = x 2 
- X + 2 j ) f (x) = .(x2 _ 1) 2 

I 

3 . What has been found when the first derivative is positive on 
both sides of a critical point? negative on both sides? 

0-i
I 
I
 

I
 
I
 
I
 



2t)
 
Integral Calculus 

In integral calculus we find the area under a curve defined by 
a function. The process is referred to as integrating the function 
or we are said to find the integral. The sign for integration is 

f 
We usually write 

f f(x) dx 

to indicate an indefinite integral. An indefinite integral is one 
in which we are only interested in finding the formula for the 
area,· not an actual area. The dx which appears in the notation is 
called the differential. One of its purposes is to indicate the 
variable of integration, x in this Case. More about the dx later, 
for the moment it is enough to simply notice that it is there~ 

A definite integral is one in which we actually want the area. 
When we want the area, we indicate the bounds of the area we want 
to find. This is indicated by writing the definite integral with 
the limits for the illtegral: 

rf (x) dx e 
Here, the a is referred to as the· lower limit of integration and 
the b as the upper limit of integration. This is probably most 
easily understood by looking at a drawing. Figure 8 shows the area 
of a function between the limits a and bi the area is marked with 
diagonal lines. 

" Figure 8 

Integral of f(x) from the Lower Limit, a, 
. to the Upper limit, b. 

f (x) 

r f(x) dx 

a b x 

To this point we have seen the notation for integration and<=) 
the concept of integration as area under a curve. How we actually 
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find an integral is a bit surprising4 
• Integration turns out to be 

the reverse operation of differentiation. In a thorough discussion 
we would start by talking about the antiderivative. That is why 
differentiation is studied first. What we have to do is be able to 
re~ernber what the process for differentiation was and reverse it. 
Lets look at what we do when there is a constant. 

Integral of a constant 

Consider a constant function, 

f(x) = k , 

The integral of a function in this form is 

f k dx = kx + c. 

By. the power rule, the derivative.of a first power is 

f I (x) =k " ~hejl,. f (x) =.Jo<: .c· 

Whatever constant appears as the coe'fficient'of a first power of x

E$ .willbeleft 'as the derivative when the power ofx·is reduced by 
one to zero. So, when we a:r:-e integrating and we reverse the

I process, we simply put the variable of integration behind the 
constant . 

I 
.	 I· This explains how where the kx comes from, where does the c 

I come from? Remember that the derivative of a constant is O. When 
..~ .~ 

\
! we see a function such as f (x) = k, the. 0 which couLd have been. 

! there' from a differentiation. is not· written down. We have to 
"- remember that it is there and add an unknown constant, c. In many 

. cases, c will turn out to be zero or to ·vanish" from the solution. 

I 
I
 
,I
 

I 

Here are some examples: 

d

4 Well, I was surprised when I saw it. If you have a 
normal amount of curiosity, you will wonder how this can 
all happen. How does this interesting and tidy 
relationship occur between these apparently different 
concepts? Once again, the calculus series in the 

I mathematics department will answer many of these 
! questions. 
1 

! 



20 

..,.... 
I 
I 
I 

Function Integral 

11f(x) =.1 dx = Ix = x + c 

f (x ) = 4 J4dx = 4x + c 

f (x) = 26 f 26 dx 26x + c= 

f(x) = 4.3 f 4.3 dx = 4.3x + c 

Integral of a Power 

You will recall tbat the derivative of a power is taken by 
multiplying the function by the power and then reducing the power 
by one.' The converse is to increment the power by one and then to 
divide the function by the new power. Equivalently, we can 
multiply the function by'l over'·the new power.' 
The formula for the general case. is: . 

.,:.. .:<>~ 
",,~''''' 

,-". .. -: --'----'----'~.~.;, ;-'. efaxndx = . a~n+l . 
. .' . + Cn'+l 

Some examples: 

".1 :­Function •Integral 
", 

f(x) = x ·f x dx = 1/2 x.2 + c 

4 5f(x) = x· f x dx = 1/5 x + C 

6 6 7f (x) = x Jx dx = 1/7 x + c 

sf (x ) = 3x4 .f 3x4 dx = 1/S·3xs = 3/5 X + c 

f (x) = 2.1x6 J2.~ 1x6 dx = 1/7·2.1x7 ='. 3x7 + C 
. "."­

0, 
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23 o Integral of a sum 

As you probably would suspect from knowing the rules for 
differentiation, the integral of a sum is the sum of the integrals. 

I f (x) + g (x) dx = f f (x) dx + Ig(x) dx 

We can use this with the previous two formulas to find integrals of 
some more complex functions: 

Function Integral 

f ( r 
f (x) = x + 1 x+1dx=Jxdx + J 1 dx 

= 1/2 x2 + x + c 

f (x) = 5x4 + x f 5x4 + 1 dx = r5x4 dx + f x dx 

= 1/5 . 5xs + 1/2 x 2 +. c 

= x 5 + 1/2 x 2 e 
, I 

I Finding'a Definite Integral 

To find the definite integral, we evaluate' the indefinite 
integral at the upper and lower limits of integration and subtract 
the resulting value for the lower limit from the upper limit . This 
is easiest seen by example: " " 

-"'::...J 
< 

< 

(5 , P 
2Jo x dx = 1/2 x + c I0 = [ 1/2 ( 5 ) 2 + c] - [1/2 ( 0 ) 2 + c] 

= 12.5 + c - o + c] 

=12.5 

At the first step in this problem, the vertical line with the 
upper and lower limits of integration at the right of the line 
indicates that the result is eva~uated as the difference between 

i the expression evaluated at the upper and lower limits. In other 
! words, you evaluate the expression at the upper limit and then 

subtract the expression evaluated at the lower limits. 
I 

o
i

I 

< 

< 
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Exercise Set 3 

1.	 plot the following function on graph paper and find the area 
between 1 and 3 by counting squares and parts of squares. 

f(x)	 = 3x 

2.	 Find the following integral and compare your answer to that of 
problem 1 .. 

f 3x	 dx 

3.	 Find the following definite integrals. 

14 . 
a) 0 x dx 

~) :L15 1 / 2X dx 

(10
 
c) . J 1/2x2 dx
s 

8 .: e. 3 2d) 10 ' 2x - x + x dx 

(10
 
e) Jox4 

- 2xJ dx
 

12 0 
f) o5x4 -2x'dx 

g) is liS x dx 

o
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statistics 

Random Variables 

A random variable is a number which is associated with the 
outcome of an experiment. Random variable can be discrete or 
continuous. It is assumed here that you have studied random 
variables before and that what is really necessary is to point out 
a few random variables, showing some which are discrete and some 
which are continuous. Acc~rdingly, examples of both of these are 
given after their definitions. 

Discrete random variables are random variables which can take 
on a countable number of points. For ex~l~; 

.0.	 The number of heads which a coin shows when 
tossed one time is a discrete random variable 
which can take on two values, 0 and 1. 

o	 The number of heads which a coin can show when 
tossed 10 times is a discrete random variablee which can take on values 0 , 1, 2, ." ~, 10. 

,
 
,
 

o 
I ThenuInber of men on a subcommittee of' size
 
I three which is selected at random from a

I
I 

committee with fourteen members, including 5
 
women, is a discrete random variable which can
 

I
, take on values. 0, 1,'2, and 3. .
 
, 

", 
o	 The item score when a student answers' an item on a 

".,'" test is a.discrete random variable. taking on values 
o or 1. 

o	 The score which occurs when a student takes a test 
of 50 items is a discrete random variable which can 
take on values 0, 1;2, ... ,50. . . . 

This last example may ,give you some pause since ',we generally treat 
test scores' as continuous' random variables. We' do, but they 
aren't. We usually assume that the continuous distribution is a 
good approximation to the distribution of the test score. This is 
typically a good assumption. 

Continuous random variables are random variables which are 
continuous functions as discussed previously. The definition will 

i serve for our purposes. Some examples: 

oC~	 If an experiment involving heights of "first grade 
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students, the height of first grade students is a 
continuous random variable which takes on values on 
the interval between 1 foot and 7 feet. (I am 
being conservative with the interval because I do 
not know the lower and upper limits of first grade 
students height.) " 

o	 In a study of smoking, the amount of nicotine a 
subject consumes in a day is a continuous random 
variable which takes on values between 0 and xx 
milligrams. 

o	 The life of a light bulb is a continuous random variable 
taking on values between 0 and' an' upper' limit which 
depends on the type bulb.' ' 

o	 The time a student spends doing homework is a 
continuous random'variable taking on values between 
o and some upper limit which we will not attempt·to 
specify here. 

'Probability 'functions. <:unliilative,brobability flJDctions. den~itye 
'functions. cumulatj.ve densh;y flJnctions and joint dj.strj.butions ' 
functions. ' ' ' 

One of the' first distinctions to make in these terms 'is that,
 
the terrnsprobability fUnction and cumu.lativeprobability function
 
are used to refer to a discrete random variable while,probability
 

'density function and cumulative density function refer to 
continuous' random variabless • The term pzobab.iLd.t.y function refers' 
to the function which relates the probability of a discrete random 
variable to the random variable itself. The cumulative probability 
function relates the sum of the probabilities of a random variable 
where the sum is taken frOIri the lowest possible value of the random 
variable up to the given point. One of the ~st commonly studied 
discrete probability functions is thebiridnual. The binomial 
probability distribution function has some interest to us because 
it aescribesthe number of success whentheanswer~'tOa 'number of 
items are guessed. ; 

A binomial experiment consists' of n independent trials, each
 
resulting in success or failure. 'The probability of success on
 
each trial is p. We are interested in the total number of success'
 
in the n trials. The number of successes is the binomial random
 

S Ok~y, most authors use ~heter.ms in this 
" 

manner. Some ,,<=) 
authors are not too careful, but you can ,usually 
determine what'is happening from context. 
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variable. The formula for the probability function of a binomial 
random variable is 

b(x;n,p) = C", pX qn-x. 

Here q = 1 - P and Cn
x is the number of combinations of n things 

taken x at a time. 

If we consider a ten item multiple choice test with 4 choices 
per item and we are interested in the number of correct answers 
when a student guesses, this is a binomial random variable with P 
= . 25 and h = 10. Table 2 gives the probability distribution 
function and the cumulative probability distribution function for 
this binomial random variable.· Table· 2 is constructed by 
evaluating the formula for the binomial random variable for values 
of x ranging from 0 to 10. Those values are placed in the second 
column and the second column is cumulated to make the third column. 

Other common discrete probability distributions are the 
hypergeornetric and the poison distributions. 

Q
'-V-I . 

-I 
I
 

I
 

....._~ .. 

\ 

d
 
I 
I 
I 
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Table 2 

Probability Distribution and
 
Cumulative probability Distribution function
 

for a Binomial Random Variable with 10 trials and P = .25
 

x P(X = x) 
Cumulative 
Probability 

0 
1 
2 
3 
4· 
5 
6 
7 
8 
9 

10 

.0563 

.1877 

.2816 

.2503 

.1460 

.0548 

.0162 

.0029 

.0004 

.0000 

.0000 

.0563 

.2440 .: 

.5256 

.7759-- . 

.9219 

.9803 

.9965 

.9996 
1.0000 
1.0000 
1.0000 

e 
Continuous random variables have probability density 

functions, PDF's. These PDF's are analogous to the probability 
distribution functions of discrete random variables. It's the term 
analogous that causes the problem here. The problem is further 
compounded if we can not go far into a calculus based explanation. 
Let's see how f a r' we can go. . 

A density function does not give the probability of the random 
variable but, as the name implies, it gives the density .. The 
density is the height of the curve at any given value of the random 
variable. The density can be used to obtain the probability that 
the random variable falls within given limits. This is done by 
finding the area under the density curve between the given limits. 
Thus·the density is closely related to probability, and we can say 
that it· is analogous to the discrete probability distribution 
function, but it is not the same. . 

In introductory statistics courses, areas under the normal
 
curve are found. Of couz.;se the hard part has already been done and
 
the results tabled. The beginning student simply reads the tables.
 
The process uses the cumulative density function. . The area up to
 
some·limit .or between some· limits is used. In other words, what
 
'you have been doing since that first bruS.h with statistics when yoU() 
found normal curve areas is .using a cumulative'density function.\..} 

. Table 3 gives the values of the probability density function and 
the cumulative density.function of the standard normal curve { ~ = 
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0, 0 2 = 1) for selected values of the standard normal deviate z. 
Table 3 

Probability density function and
 
Cumulative Probability Density function
 

for a Normal Random Variable with u = 0, 0 2 = 1
 

x 

-3.5 
-3.0 
..,-2.5 
-2.0 
-1.5 
-1.0 
-.5 
0.0 

.5 
1.0 
1.5 
2.0 
2.5 

e .,3.0 " 
3.5 

, r 

f(x) 

.0009 

.0044 

.0175 

.0540 

.1295 

.2420 

.3107 

.3989 

.3521 

.2420 

.1295 

.0540 

.0175 
".0044" 
.0009 

Cumulative 
density function 

.0002 

.0013 

.0062 

.0238 

.0668 

.1587 

.3085 

.5000 

.6915 

.8413 

.9332 
<9772 ..
 
.9938
 

, .9987'
 
'.9998
 

In Figure 9, the cumulative dehsity function val~es from Table 3 
have been plotted. Notice that the 'curve elpproachesbut never 

"reaches the value' of 1. ,'I'h~ curve is said to be·a'symptotic·' to l' 
-, and l'is' said to be an asymptote of the curve.' , 

The curve in Figure 9 is one of the main 'reasons we have been 
going through this review of mathematics and statistics. The form 
of the curve is what is important to us. The'particular form of 
the curve, its characteristic' ·stretched outS· shape is what is 
noteworthy. That shape, or sometimes a portion of that s.hape, is 
what is found for many item response curves., "As item response 
theory"was developed, workers' :iI1 the fie,ld' attempted 'Eo derive 
methods which would yieldthatcurve.'UnforttihatEHy, integrating 
the normal curve is not a straightforward process. In fact, simple 
formulas for normal curve areas do not exist and normal curve 
integrals are only found by approximation. The approximations are 
not readily usable in item response theory. No one was able to 
derive any theory with ,the cumulative normal density function. It 

o " .. 
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was, as mathematicians say, Lntractabl.e", So what to do?' Use0 
something else of coursei and that, dear reader, is the topic of a 
later section. ' 

',Figure 9 

',-~ .,~ . - ­ ' 

Plot of the cumulative density function of
 
the standard normal curve
 

F(x) 

" , 

-3.0';-2.0 ,-1.0 o 1.0 _.2.0. . 3.0 z 

The Logistic Cumulative Distribution Function_ 

Since those who developed item response theory wer~ trained in
 
statistics, it is only to be' expected that. t.hey would want to use
 
the cumulativenortnt;\l distribution to approximate 'a., curve that
 

'looks t hat . in Figure' 9. Due to the mathematical difficulties of 
working withJ:he cumulative normal distribution, this didnqt prove 
feasible. A'second candidate for use proved more easily managed, 

,the logistic,cumu+ative dist:ributionfunction: 
, 1 

f (x) =
 
1 + e -x »
 

This funct.Lon.ihas the' same general shape as that 'in Eigure 9 and it
 
proved to be much. easier to wor}c with·tlian:'the cumuLat i.ve _normal
 
distributipn. 'irhe function has becomecentral,in-itemresponse
 
theory. '
 

6 My thesaurus gives these synonyms for in~ractable: 
disobedient, incorrigible, rebellious, uncontrollable, 
unmanageable; unruly, ,froward, ,_ obdurate".stubborn, 'f';'" •.,.",...•4,. 
~~~o~:~~t~~ese~~=r~;i~~~ ~~~t~~v{sri~y~~i~~n~~ ,0'.1. 
work easily. 

------------------~
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Exercise Set 4 

e
 

o
 

1.	 Verify three of the 
probabilities on Table 2 
by calculation. ( 

Find f (x) for 3 of the 
x I s on table 3. Compare 
your results with the 
values in t~e table. 

3 .	 Verify the: cumulative 
probability for x = 3 on 
table 3 by comparing to a 
table you already know 
well. 

4.	 Evaluate the cumulative 
logistic::: 'distribution 
funct ion on the interval 
from :-3.5 to, 3.5 at every 
urri, t and half: un.i t valtie .'C 

plot the, results and 
compare to Figure 9. 

S.	 , Say "a 
,- ' 

c o n t; Ln uou s 
probabiiity Junction" is 
defined by t.he dens i ty 
function 

f(x) = 2x/S, 0 <= x <= 5 

, a) Plot f (x) over' the, 
Lnt; erval [0,5 J •. 

b)	 Use the, formula, for:, 
the area of a 
triangle to find the 
area 'under f (x) 

, between Oanq 1. 

c)	 Find the integrals 
and graph the 
following areas. 

i)	 o f (x) dxf


ii)	 r0 f (x) c1x 

f_s 
iii)	 1 f (x) c1x 

iv)	 fs f (x) c1x 

6.	 If you know calculus well 
enough (more than we have 
done here), use Simpson's 
rule to estimate the area 
under the normal curve 
between z == - 3 and , 
z = -2. How good is the 
estimate? 

7 • Again, if you, .have 'a good 
cal.-culus ba'ckgrciund,find 
the sect.ion'cn'the normal 
curve in " a mathematical 

'~statistic~{'book, such as 
th0S~' by Hogge. and Craig' 

,', or Mood and Graybill and 
follow the proo'f .~that 

'f", ,,1	 , -x,2 f2dx ~ '1----,....e .' ­
_.. /2n· , 

i 
.;;,,~,;.~-.~~ . 

i 

'. '-':":'~'~.- .. .' .~.".. "'~'''.' " .' 



Maximum LikelihoQd EstimatQrs 
. . 

TQ the beginning student in statistics,' it seems lQgical tQ
 
estimate the pQpulatiQnmean with the sample mean; the population
 
variance with the sample variance; and SQ on. To the mathematical
 
statistician, these es t i.met ors cry out for a met.hodo.Loqy which
 
justifies their use and will yield estimators when the case is not
 
SQ obvious. Mathematical statisticians look fQr a prQcedure which
 
will yield an estimator. For example, in simple linear regression
 
how does Qne obta i.n the estimates of. the slope and intercept .
 

. These estimators are not at all obvious as t.he v.aempLe mean is an 
obvious estimator Qf the population mean. '. 

. . The .s Lope and irit in simple regression. ar7found by the 
7ercept·least squares approach. The least squares approach 1.S a procedure 

which yields estimators which minimize the squared distance between I 
the estimate and the thing estimated~ Mathematical statistics uses I 

many 'least squares estimators and there is a' -fafrly standard manner' I 

of finding least squaresestimatQrs. When a new parameter is I 
defined and it is d¢sired to. estimate that parameter, a J 

,stat,istician can follow the least s .. ·.ar-: ..·.d_.u,·,:,_.r,·.e to .see· if' an. ..' ....qu ..e,·_·s. procc.e !" . ~strmator can be derived.'·· _ 'L,< 
• ~ -. > -. • 

.;. Ano'ther" _c, common .procedure ._ for .findingan'-~:~~imator 'is .. thee+ 
method of maxamum likelihood. ',tn this prqce9UI;-e,a likelihood ' 
func'tion is defined and then the'ma:ximum value of'the function is 
f ourid for some given sample data. The values ;whic'h maximize the 
likelihQQd functiQn are referred to as maximum likelihQQd
 
estimatQrs.
 

Sometimes the least squares estimator an<;:lthe max.imum .
 
likelihood 'estimator are identical;' as when it .is vdesi r-ed to find
 
an estimator fQr the mean. Sometimes these estimators differ, as
 
when it is desired to find anestirriator for the variance. Other
 
criteria are also impQrtarttinselec:ting' an estimator . Is the
 
estimator consistent? Does' it have minimuinvariance? These and
 
other criteria are among the methods used to select estimators .
 

• ?"". 

Maximum likelihood estimators are freQu~~~iy easy to find and
 
rnakegood examples because of the ~ase of the theory .. First we
 
must define a likelihood function. Say that we have a random'
 
sample of size n from some distribution of known form. The
 
likelihood function is the product of the n terms that result when
 
the distribution function is evaluated at each observation in the
 
function and each of these is multiplied together~
 

.. '. ,'·,.f .' . -. '., . . 

7 See Appendix A for the deri~at:ion of' the least squares oestimates of the slope and intercept of a simple linearre~ression 
line. 

----------------~
 
I 
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Let's see the motivation for this definition. Since the n 
observations are random, they are independent. Independence of two 
random variables means that the joint probability function of the 
two random variables is the product of the probability functions of 
the two. random variables. Thus, due to the independence, the 
probability of the joint occurrence of 2 of these observations is 
gi¥en by this product of the distribution functions. The argument 
extends to the general case of n random variables. 

A particulary easy maximum likelihood estimator to find is the 
maximum likelihood estimate of the mean in a normal distribution. 
Remember the equation of a normal curve is . 

f(xl = 

If we have a sample of xl, ~, ... Xn, t hen .the likelihood function 
is the product of the normal dds t r'Lbut.Lon evaluated at each· of 
these observations. If we label the likelihood function L, we have 

e 
No t.Lce that this is the product of n terms, one term for each of 
the nobservations in the sample. Further notice that each term 
consists of the product of a fractional constant and a power of e. 
Since there are n constant fractions we can gather them together 
and use anexpone~t to simplify the expression: 

1 X -\1 2 1 X _p.2 x -\1 211 n .- I 1 .. J -_1_2_ J .. -_I_ft_·J
L={ ·)e 2 - O- . e 2 0 . e 2 0 

.J2ncr 

Next, we notice that the powers of e can be combined by adding the 
exponents so that we obtain: 

1 Xl -\1 2 1 x2 -\1 2 1 X - \1 2
1 n --{--J. --(--J - . _ --(--J

L= ( 1 e 2 0 2 0 2 0 

n 

J2ncr2 

.. . . . 

NoW, to find the maximum likelihood estimator.:ot -u, ,.we havert;oo maximize this function with respect co ji , . With our meagerv 

knowledge of calculus, this looks like a forriri.dable task, until we 

-----------------~
 
1 
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learn the'tricks ( Yes, two genuine tricks to make life easier). 
We reason thus: 

First, the fractional constant can be dropped 
since the function will be maximized with or 
without the constant~ 

Second, if L is to be maximized, then the 
logarithm of L will also be maximized. Why 
not'take the logarithm'of,L and maximize that. 

First, we drop the constant leaving 

1 ' xl -:-1.1 2 1 X2 -11 2 1 x"-11 2
--1--1 --1--1 -. --1-'-I

L= e 20 20 2 0 

Next we take the logarithm. Obviously, this will be easiest if we 
use natnral logarithms~ , 

1 Xl-~ 2 1 x -~ 2 1 x -~ 2 
__ (_2_,_)In(£) = ---- (--) -:-"'- (_n_) 

20 2 0 ' " 20 

e~ 
, I .I ,We then have 

',1 Xl-~ 2 1 x: -~ 2 X-~ 2 
f(~)- __ (-'--) '~_ (_'~-Z_'_•...) -~r_n_, )

'2 0" 20 " 2 '(J 

Again the function will be maximized if we factor out the fraction 
-~and delete· it fora constant multiplier will not change' the 
maximum of the function. 

'The derivative with' respect to).l'isthen .E!asily0found by the ch~inO' 
rule "'OJ '_ • 

.. 
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We set the derivative equal to zero and factor out {the constants: 

Then we multiply both sides by -oJ/2 to remove the constant 

Rearranging terms we have 

Xl + JS + • • • +x ~ 1.1 - 1.1 - -1.1=0n 

e or 

EX i - n1.1 = O. 

n1.1 = EXi 

1.1 = Ex/n 

Which is the maximum likelihood estimator for 1.1. ~.. 

In this case, we would obtain thes~e estimator if we sought 
the least squares estimator. The maximum likelihood estimator and 
the least squares estimator sometimes produce the same estimate and 
sometimes do not produce the same estimate. 

, . 

o
 

----------------~
 



Exercise Set 5 

1.	 State the form of the 
probability distributions 
functions for each of the 
discrete random variables 
on·page 26. 

2.	 Describe the procedure 
for obtaining a maximum 
likelihood estimator. 

3.	 Reread the. section on 
finding the maximum 
likelihood estimator of 
the mean, then take the 
likelihood function in 
its final form, take the 
derivative, and find the 
estimator. In other 
words, find the maximum 
likelihood estimator 
beginning at the point . 

.'. 

o
 

-----------------~
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IMPORTANT TERMS 
You should watch for these terms in the text and be sure you 
understand them.', 

abscissa 
~alculus 
concave down 
concave up 
concavity 
continuous function 
continuous random variable 
cumulative density function 
cumulative probability function 
density function 
definite integral ,i-

dependent variable 
derivative 
differentiate 
differential calculus 
discrete random variable 
domain 
extrema 
e 
function 
indefinite integral 
independent variable 
integral'" , 
integral calculus 
irrational nUffiQer 
least squares estimator 
logaritlun 
maximum likelihood estimator 
ordinate 
probability function 
random variable 
range 
rational number 
real number 
relative maximum 
relative minimum 
tangent line 



Appendix A 

Finding ieast squares estimators for simple linear regression. 

The regression line is an equation of the form 

y' = a + bx " 

Here, x is an observe~ value of the independent variable, y is an 
observed value of the dependent variable, y' is theestirriated value 
of y, a is the intercept of the regression line and b is the slope 
of the regression line. What we would like to·· do is find 
estimators of a and b whi.ch will give us a best line. Best is 

. usually defined as the least squares line, The least squares line 
,is the line which will minimize the sum of the squared differences 
between y and y'. The sum of the squared differences is 

. which can also be written as e'
I 

~(y - a - bX}2. 

,We want to minimize this sum of squares. This is where the
 
name for the Hleast squares approach H comes from .
 

. We are used to thinking of this quantity to be minimized, 

~ (y - a - bx) 2 , 

as a function of x and y, but we can see this last version can
 
also be viewed as a function of a and b. we have then
 

f (a, b) = ~ (y - a - bx) 2 • 

Remember that the sigmahotation simply indicates summation
 
and that the derivat;iveof a sum is the sum of the derivatives. We
 
can thus take derivatives inside the summation and they will add
 
appropriately:
 

d.f = ~ 2 (y - a - bx) 1 (-1 ) 
aa 
d.f
 
ab = ~ 2 (y- a - bx) 1 (-x).
 

o
 
If we set these two derivatives equal to zero and solve the 
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o resulting two equations simultaneously, we find: 
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E 2(y 

E 2 (y 

- a 

- a 

- bx) 1 

- bx) 1 

(-1) 

(-x) 

= 0 

= 0 

Partial with respect 

Partial with respect 

to a. 

to b. 

-2E 

-2E 

(y 

(y 

- a 

- a 

- bx) 

- bx) 

=0 

(x) = 0 

Move 

Move 

constants outside E . 

constants outside E. 

E 

E 

(y 

(y 

- a 

a 

- bx) 

- bx) 

(x) = 

= 

0 

0 Divide by -2. 

Divide by -2. 

Ey - Ea 

E (xy -

- Ebx 

ax - bx2 
) 

= 0 

= 0 

DistributeE. 

Multiply through by x. 

Ey - na - Ebx .~ 0 Summation rule. 

Exy - Eax· - Ebx2 =0 . . Distribute· E~· 

Equation 1: Ey - na - bEx = 0 Move constant outside E. 

Equation.2: Exy - aEx ~ bEx2 = 0 Move constant outsideE. 

We.now solve the Equation 1 for a and sUbstitut::e that result fo~a in 
Equation 2 and	 solve the resulting equation. 

Ey - na - bEx = 0 Equation 1. 

na = Ey - bEx Move terms across equal 
. sign. 

a = O;:y - bEx) Divide by n. 
n 

Substituting this result for a into Equation 2 we find: 

Exy aEx bEx2 = 0 Equation 2. 

Exy - lEy - bEx)Ex ... bEx2 
.,:",,,,,,:,,,, 0 Substitution.f 

n 

o	 Exy - ExEy - bI:xEx - ·btx2 = 0 Remove parentheses. 

___________-----1-.
 i 
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! 
, 

04
I

0 

! n 

, b (!:x) 2 - b!:x2 I 

= 0 Separate fraction into 
n two fraction's 

-bO::x) 2 + b!:x2 =!:xy _ ~ Move terms across equal 
n n sign. 

!:xy - ~ Factor b out of two terms~ 
I 

n 

!:xy - ~ 

n 
b - Divide both sides_by 

n EX 2 _ (!:x) 2 

n 

This is the solution for the slope, b. To find the solution for a ~ 
can take equation 1 and solve for a. 

.," . -" . Ey - na - bEx = 0 Equation 1 

:Ey - a - ~ = 0 Divide by n. 
n n 

a=:Ey-~ M?veterms across equal 
n n slgn. 

~J:{ecognizing the formulae for y and x , we can rewrite ,the last equatiop 
..........
 " as: 

a = y - bx 

o
 

! 

---------------_.~
 
I 
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