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The topic of test reliability is about the relative consistency of test scores 
and other educational and psychological measurements. In this 
module, the idea of consistency is illustrated with reference to two sets of 
test scores. A mathematical model is developed to explain both relative 
consistency and relative inconsistency of measurements. A means of 
indexing reliability is derived using the model. Practical methods of 
estimating reliability indices are considered, together with factors that 
influence the reliability index of a set of measurements and the 
interpretation that can be made of that index. 

No measurement is perfect. For some measurements, a 
source of imperfection is obvious, as when we use a bathroom 
scale that has been calibrated in two-pound intervals. Even if 
the scales worked perfectly, the best we could hope for is a 
reading within a pound or two of the correct weight. But if the 
scales were poorly calibrated or the inner mechanism were 
faulty, the error could be considerably greater. 

Measuring procedures with finely graded or finely calibrated 
scales foster the impression that the measurements obtained 
using the procedures will be very precise. But repeated 
application of such a measuring procedure to the same person 
or object may reveal quite startling fluctuations-for example, 
bodily measurements such as heart rate or blood pressure. 
Inconsistent measurements are a bane to persons engaged in 
research. Scientists have learned to repeat their measures 
several times when it is important to obtain results in which 
they can be confident. The average of a set of repeated 
measurements provides a more precise estimate of what is 
being measured than does a single measurement, and, as a 
bonus, the amount of variation in the repeated measurements 
shows how inconsistent the numbers produced by the 
measuring procedure can be. Unfortunately, the measuring 
procedures we use in education usually cannot be repeated as 
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easily as can some of the measuring procedures used in the 
physical sciences. 

The foregoing discussion is not to deny that test scores often 
appear to possess great precision. With a test that is scored 
objectively, we may easily convince ourselves that a score of 49 
means that the individual answered precisely 49 questions 
correctly, not 48 and not 50. It is true that as a count of correct 
answers the test score contains no error. But as a measure of 
some ability possessed by the examinee, we cannot be so 
confident. Can we be sure that another person of the same 
ability would have obtained exactly the same score? Can we 
even be sure that the same person would have obtained the 
identical score had the test been administered on a different 
occasion or under different circumstances? We cannot, and it is 
for this reason that we must turn our attention to the question 
of error in test scores-error in the sense of uncertainty, not 
error in the sense of a mistake. How can we interpret a test 
score that provides uncertain information about a person, and 
how can we obtain information about the degree of uncertainty 
to attach to test scores? These are the questions that will be 
addressed in this module. 

The Concept of Reliability 
In everyday life, the concept of reliability is closely associated 
with the idea of consistency. Let us consider several familiar 
examples. An automobile is a reliable starter if its motor 
invariably starts at the turn ofthe ignition key. An employee is 
reliable if she does all the things expected of her on the job. A 
vacation guide is reliable if it contains information that is 
consistent with the experiences of the traveller. Notice that the 
attribution of reliability in these examples can be made only 
after several-perhaps a great many-repetitions of some 
chain of events or behaviors. Thus, a car will not be judged a 
reliable starter until it has been started successfully many 
times over a period of months. To be thought of as reliable, an 
employee must perform her duties faithfully each day for 
several months, perhaps years. 

These examples may suggest that the term reliable applies 
only when an event or behavior occurs with perfect consistency 
or predictability. But this is not so. A baseball player who 
makes a hit on average only once for every three times at bat 
will nevertheless be called a good (that is, a reliable) hitter. 
Clearly, reliability is not necessarily an all-or-nothing concept. 
There can exist degrees of reliability such that one person or 
object is judged more reliable than another. For example, a 
typist who makes five errors on average in each 100 words 
typed will be judged more reliable than the typist who makes 
ten errors on average in the same number of words typed, even 
though neither person is perfectly reliable in the sense of 
producing error-free typing. Similarly, some cars may be more 
reliable starters than other cars. If there is a difference in the 
starting reliability of two cars, it can be discovered through 
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Table 1 
Examinee Scores on Two Forms of a 
Thirty-Item Multiple-Choice Test of 
Mathematics 
Examinee 

I.D. 

1058 
51 
57 

1084 
559 

2 
1132 

266 
1051 
1050 

71 
1079 

438 
413 

45 
286 

1007 
455 
598 

1147 
139 
524 
180 
564 

Form 
A 

27 
26 
26 
26 
25 
25 
25 
24 
24 
24 
24 
23 

7 
7 
7 
7 
6 
6 
6 
6 
6 
6 
6 
5 

Form 
B 

16 
26 
26 
26 
26 
25 
23 
28 
26 
21 
15 
22 

8 
7 
6 
6 

13 
12 
12 
12 

8 
8 
4 

16 

repeated attempts, made under similar circumstances, to start 
both vehicles. 

The concept of reliability is also used to describe and assess 
the scores that persons achieve on educational tests. In this 
application, reliability carries some of the connotations of its 
use in everyday speech. To make the connection clear, it will be 
helpful to illustrate the meaning of consistency of educational 
measurement, and then suggest a way of indexing it. 

Table 1 contains a selection ofthe scores obtained when two 
3~-item multiple-choice mathematics tests were administered 
to 199 eighth grade students. Math Test A and Math Test B 
were designed to measure the same achievements and to be 
equally difficult. (Such tests are usually referred to as alternate 
forms.) We note that many students, perhaps most, gained 
quite similar scores on the two tests, but that a small number 
increased their scores dramatically (e.g., student #564, who 
scored 5 on Math Test A and 16 on Math Test B). Others did 
less well on the second testing (e.g., student #1058, who scored 
27 on Test A but dropped to 16 on Test B). If we are to regard 
the two tests as measuring the same achievement, we must 
concede that there are, at least occasionally, substantial errors 
of measurement. But giving all our attention to cases such as 
these two may create the impression that there is no consis­
tency at all in the test scores. This would be wrong, too. 
Because the data in Table 1 have been ordered from high to low 
on Math Test A, we are able to recognize that those who scored 
high on Test A tended also to score high on Test B, and likewise 
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FIGURE 1. A plot of scores on Math Test A against scores 
on Math Test B for 799 eighth-grade students 

for those who scored low. So, instead of is king "Are the scores 
from the two tests consistent?" or "Are there errors of 
measurement?" we need to ask "How consistent are the scores 
from the two tests?" or, conversely, "How much error or 
inconsistency do the scores contain?" These questions may be 
addressed graphically or by computing the appropriate sum­
mary statistics. 

Graphical Treatment 

Figures 1 and 2 illustrate the notion of consistency of educa­
tional measurements. In Figure 1 the scores that each of the 
199 students achieved on Math Test A are plotted against the 
scores achieved by the same students on Math Test B. If each 
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Score on Vocabulary Test A 

FIGURE 2. A plot of scores on Vocabulary Test A against 
scores on Vocabulary Test B for 799 eighth-grade stu­
dents 
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student had achieved identical scores on the two tests, the 
plotted points would all lie on the diagonal line through the 
origin with a 45-degree slope. This line defines perfect consis­
tency of measurement -every student receiving the same score 
on each measurement occasion. The fact that the plotted points 
in Figure 1 scatter about this straight line is evidence of 
unreliability or inconsistency in measuring the mathematics 
achievement of these students. The degree to which the points 
scatter is an indication of the amount of unreliability or 
inconsistency in the scores. We note that one effect of measure­
ment error is that the two tests will rank the students 
differently. The two students referred to previously (#1058 
and #564) can be identified on the scatter plot, and the alert 
reader will note that in the complete data set there are students 
whose scores changed by even greater amounts. 

Figure 2 is a plot of the scores that the same 199 students 
achieved on two multiple-choice tests of vocabulary. Here again 
the forty-five degree line through the origin has been drawn on 
the figure. Notice that this line is not ideal for representing the 
trend in this plot. Scores on Vocabulary Test A were, on . 
average, about two points larger than scores on Vocabulary 
Test B, so more of the plotted points in Figure 2 lie below the 45 
degree line than above it. Although it is possible that these two 
tests measure the same characteristic, one (Test B) is more 
difficult that the other. This suggests a less stringent notion of 
perfect consistency in the measurements provided by two tests. 
We have perfect relative consistency when there exists a 
general rule for obtaining any examinee's score on one test 
from his or her score on the other test. This includes all 
situations in which the plot of scores on two tests lies entirely 
on a line. It is not necessary that the line be straight, but for the 
argument to be made that the tests measure the same charac­
teristic, albeit in different ways, it must be true that as the 
scores on one test increase, the scores on the other test also 
increase. Usually we limit our attention to situations in which 
the line of relationship defined by the scores on two tests is 
straight. 

The data plotted in Figures 1 and 2 give evidence of a 
particular kind, namely, evidence of degree of consistency in 
the scores achieved on two tests that were intended to measure 
the same characteristic and that were administered to the same 
group of examinees on two different occasions. Several other 
kinds of consistency may be of interest. Examples include 
consistency in the scores on just one form of a test, which has 
been administered on two different occasions to the same group 
of examinees, and consistency in the scores on two different 
forms of a test, which have been administered on the same 
occasion. Interest also extends, for example, beyond test scores 
per se to the consistency with which different markers grade 
the same set of essays, or the consistency with which different 
judges rate the performances of different figure skaters in 
Olympic competition. 

By visual inspection alone, we can readily conclude that the 
scores shown in Figure 2 are more consistent (hence more 
reliable, containing less error) than those in Figure 1. In 
sections to follow, we will look at ways of indexing the degree of 
reliability and the amount of measurement error in sets of data 
like these. 

Formalization 
The notion that is called classical reliability can be developed in 
a formal sense by concentrating first on the measurement of 
one characteristic of just one person. To be concrete, let us 
suppose that the person is an eighth grade student and the 
characteristic of interest is achievement in mathematics. Fur­
ther, let us imagine that this student can be retested many 
times with the same instrument, and that the student's 
mathematics achievement is not affected by the process. (There 
are, of course, many reasons why frequent retesting cannot be 
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FIGURE 3. Histogram of 100 test scores for one (hypo­
thetical) examinee 

done in practice. People learn from writing tests, they remem­
ber responses previously given, and they become tired and even 
unwilling. None of this matters. What we are doing is setting 
up a model; anyone testing. occasion will be regarded as one of 
the many that could possibly have taken place. Our aim is to 
investigate the implications of the model, and then apply them 
to the data from only one or perhaps two testing occasions.) We 
would not expect all the scores resulting from this repeated 
testing experiment to be the same, just as we would not expect 
the repeated measurements that could be made of the length of 
a table, using a tape-measure that has a suitably fine scale, to 
be all the same. In both cases, any variation in the numbers­
scores, measurements-is presumed to be due to errors of 
measurement. (There are many sources for errors in tests 
scores, for example, inconsistent behavior on the part of 
examinees, mistakes in marking, different interpretations of 
examinees' responses, changes in an examinee's mood, motiva­
tion and mental alertness, guessing, and even sheer luck in the 
choice of questions for the test.) 

Further study of the repeated measurements of a single 
characteristic of one person can be facilitated by a bar graph or 
histogram, such as that in Figure 3. We see that the depicted 
frequency distribution of repeated measurements has a central 
point where the frequency (or density) of scores is greatest. We 
also see that the scores spread themselves over a portion ofthe 
scale of measurement. If Figure 3 represents the results of an 
experiment in which the mathematics achievement of a stu­
dent is tested repeatedly, we can take the central point defined 
by the arithmetic mean of the distribution to be the score that 
best represents the student's mathematics achievement. By 
convention, we refer to this central point as the student's true 
score. (With reference to Figure 3, the true score of the 
examinee is estimated to be 19.3, the mean of this distribution. 
The standard error of measurement for these scores is esti­
mated to be 1.4, the standard deviation of this distribution.) 

The term true score can easily be misinterpreted. It is not 
intended to convey any notion of absolute truth, of what a 
person is "really worth" on a test. It means no more and no less 
than what is stated in the definition: the person's average score 
over repeated (necessarily hypothetical) testings. A person 
with well-developed test-taking skills may score so consistently 
high on a test that we believe the scores overestimate his or her 
achievement. Nevertheless, such a person will have a high true 
score. The overestimation is not, in this formulation, seen as 
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measurement error. Instead, it is seen as bias due to test­
taking skills, which enhance the person's test scores but which, 
we believe, are unrelated to the ability the test is intended to 
measure. It is only scatter about the true score, not bias in the 
true score itself, that is presumed due to errors of measure­
ment. 

The smaller the variance or 
standard deviation, the smaller the 
effect that errors of measurement 
have, in general, on test scores. 

A useful index of the size or extent of these errors is the 
variance or its square root, the standard deviation, ofthe scores 
in the distribution of repeated measurements. The smaller the 
variance or standard deviation, the smaller the effect that 
errors of measurement have, in general, on the test scores. 
Given two tests of the same characteristic, each yielding scores 
on the same scale, the test with a standard deviation of errors 
that is smaller provides greater consistency of measurement 
than the test with a standard deviation of errors that is larger. 
(The standard deviation of repeated measurements is called the 
standard error of measurement.) 

The nature of educational testing (and most psychological 
testing) is such tvat repeated measurements of the same 
person are usually impossible to obtain. The concept ofreliabil­
ity has been developed in the more realistic context in which 
many individuals are measured on the same characteristic, 
rather than the situation where a characteristic of one person 
is measured repeatedly. Instead oflearning about the distribu­
tion of measurement errors for one person, what we must do is 
study the test behavior of many persons, thereby trying to 
learn about the average size of the measurement errors across 
the group of persons. In principle, we are able to do this, 
provided we have a minimum of two measurements for each 
person, these having been obtained using more-or-less equiva­
lent tests or procedures. The difference between the two 
measurements for a person gives us an indication of the size of 
the measurement error for that individual. By itself, one such 
difference for one examinee is not good information, for by 
chance it may be much larger or much smaller than the average 
of many separate determinations of the difference. The differ­
ences between two more-or-less equivalent measurements of 
each member of a relatively large group of examinees provide 
us with good information about the distribution of measure­
ment errors across the group (even though this information 
does not necessarily reflect how differences in a large number 
of repeated testings of a single individual would be distributed). 
The strategy of testing a group of examinees two or more times 
is one that we will follow in order to learn about measurement 
error. 

Suppose now that everyone in a well-defined population of 
students is measured just once with the same test instrument. 
All the scores so obtained can be assembled into a frequency 
distribution. The question is how to interpret the scores in this 
distribution using the concepts of true score and error of 
measurement. Two extreme situations can be imagined. In the 
first, all the scores in the distribution are considered to be true 
scores, with no errors of measurement. In such a case as this, 
all differences in observed scores could be expected to recur in 
another administration of the test. And all the variance in the 
scores is true-score variance. The second extreme situation is 
that in which all examinees have identically the same true 
score; hence, all observed-score variation is due to variation in 
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errors of measurement. In this situation, we could not expect 
the differences in observed scores to be maintained in the 
scores from another administration of the test. 

Neither of these extreme situations is realistic for scores on 
educational and psychological measures. We expect such scores 
to include a true-score component-how else could we explain 
the relatively high degree of consistency apparent in Figure 1 
in the way examinees are ordered by their scores on the two 
math tests? But, we also expect the observed scores to include 
an error component-how else could we explain why the 
examinees in Figure 1 are not ordered in exactly the same way 
by the scores they obtained on the two math tests? Thus, we 
expect the variation in any set of observed test scores to be due 
partly to variation in true scores and partly to variation in error 
scores. But we cannot tell, just by studying the frequency 
distribution of observed scores from one administration of a 
test, how much variation is attributable to each. Classical 
reliability theory provides us with ways of estimating these 
amounts. 

The theory of classical reliability begins with the proposition 
that any time a person takes a test, the observed score X may be 
broken up into two components: the true score T (as defined 
previously) and an error score E, which is the difference 
between the observed and true scores. Formally, we write 

X=T+E (1) 
Over the many possible testing occasions we imagine are 
possible in the repeated testing experimept described earlier­
only one of these occasions usually occ'urs in reality-Tis the 
same for an individual over all occasions, but we accept that X 
is likely to fluctuate, depending on which testing occasion 
actually is chosen for the individual. We attribute this variation 
in X to fluctuations in the error score, E. If we assume that in 
the long run observed scores will scatter symmetrically on 
either side of T, then the error scores will average out to zero, 
whether the true score be high or low. In statistical terms, a 
consequence of the way in which true and error scores are 
defined is that error scores will be uncorrelated with true 
scores. Because this is so, it follows that the variance of the 
observed scores for a set of examinees will consist simply of the 
sum of two separate and uncorrelated variances, one due to 
true scores and the other due to errors of measurement. 
Symbolically, 

where 

ai is the variance of the observed scores, 
ai is the variance ofthe true scores, and 

(2) 

Ave(a~) is the variance of the error score distribution for 
each examinee, averaged over all the examinees who 
were tested. Hereafter, Ave(a~) is simply denoted by 
a~ . 

Thus an observed-score variance of 100 might result from a 
true-score variance of 90 and an average error variance of 10. 
But it could also result from a true-score variance of 40 and an 
average error variance of 60. We need classical reliability 
theory to help us distinguish between situations as fundamen­
tally different as these. 

The above expression for the relationship among the 
observed, true, and error variances for an educational measure 
makes plain the fact that for fixed, observed-score variance, 
any increase or decrease in true variance is accompanied by a 
corresponding decrease or increase in error variance. It is also 
clear from this relationship that if the variances of the errors 
associated with the measurements of different examinees are 
approximately equal, in which case ~ is approximately the 
same for any group of examinees, then any difference in 
observed score variance for different groups of examinees must 
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be due to differences between the groups in true score variance. 
This means that the "range of talent" in the group of 
examinees being tested affects the relative magnitude of the 
true-score variance to the error-score variance. Group heteroge­
neity on the characteristic being measured is an important 
factor to be considered in assessing the reliability of a test, a 
point to which we will return later in this module. 

Indexing Reliability 
A natural way to think of indexing reliability, given the 
relationship among variances expressed in Equation (2), is as a 
ratio, specifically the ratio of true-score variance to observed­
score variance. This ratio is near one when most of the 
observed-score variance is attributable to true scores; it is near 
zero when the true variance is small relative to the observed 
variance. The ratio of true-score variance to observed-score 
variance is one way of defining the concept of reliability for 
educational and psychological tests. Here and subsequently, 
the symbol Pxx' is used to denote the reliability coefficient. 
Symbolically, Pxx' is defined as follows: 

Pxx' = ai/ai (3) 

Because of the additive relationship between true- and 
error-score variances (they sum, as noted previously, to the 
observed-score variance), it can easily be shown that this ratio 
is identically equal to one less the proportion of observed-score 
variance attributable to error variance: 

(4) 

The concept of reliability defined and indexed in this way has 
several useful properties: . 

• It is a dimensionless number (i.e., it has no umts). 
• The maximum value of the coefficient of reliability is one, 

when all the variance of observed scores is attributable to 
true scores. 

• The minimum value of the coefficient is zero, when there is 
no true-score variance and all the variance of observed 
scores is attributable to errors of measurement. 

• In practice, any test that we may use will yield scores for 
which the reliability coefficient is between zero and one; 
the greater the reliability of the scores, the closer to one 
the associated reliability coefficient will be. 

It is common for test users and developers to see reliability 
as an important property of the scores examinees attain on a 
test and to see the reliability coefficient as a vital indicator of 
test~score quality. It would be rare for publishers of tests. not t.o 
provide data on reliability in their te~t. manuals,. espeCIally If 
they aspire to any degree of respectabIlIty for their tests. But, 
while accepting that reliability is an important property, w,e 
should not imagine that a high reliability coefficient alone IS 
sufficient to demonstrate the high quality of a set of test scores. 
A test that yields highly reliable scores may measure abilities 
that are not considered important, and the test scores may be 
interpreted incorrectly or used for inappropriate purposes. 
These issues are addressed at length in measurement texts 
(e.g., Allen & Yen, 1979; Crocker & Algina, 1986). Moreover, it 
must be stressed that reliability is not simply a function of the 
test. It is an indicator of the quality of a set of test scores; 
hence, reliability is dependent on characteristics of the group of 
examinees who take the test, in addition to being dependent on 
characteristics of the test and the test administration. These 
matters will be discussed in more detail presently. 

Estimating Reliability 
As we have defined reliability to this point, it consists of a ratio 
of two quantities, one of which-the obseryed-sc~r~ variance­
can be computed easily whenever a test IS admimstered, and 
the other of which-the true-score variance-cannot be com­
puted directly because true scores are unobservable. (Through-
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out, we assume that a sufficiently large sample of examinees is 
tested so that the effect of statistical sampling error on an 
estimate of variance can be safely ignored.) To obtain estimates 
of the unobservable quantities, the true-score variance (a~) 
and average error variance (a~), it is necessary once again to 
appeal to the notion of repeated measurement. 

Suppose that two forms of a test are administered on 
different occasions to a large sample of examinees. (Later we 
will consider other ways in which repeated measurements can 
be obtained.) We need to make certain assumptions about the 
two tests. Earlier it was indicated that they should measure the 
same ability. Formally, we will assume that any examinee that 
we choose will have identical true scores on the two tests, or 
that if true scores on the two tests differ, the relationship 
bet~een them will be of a particular type known as a linear 
relationship. This means that the graph formed by plotting 
examinees' true scores on one test against their true scores on 
the other test will be a straight line, never a curve. True scores 
on the two tests, therefore, should rank the examinees in 
exactly the same way. If this is the case, and if errors of 
measurements are truly random and therefore independent of 
each other and of true scores, it can be shown by some 
reasonably simple algebra, that the unobservable quantity 

Pxx' = ai/ai 
is exactly equal to the coefficient of correlation between scores 
from the two tests. The proof of this result is not given here, 
but interested readers may turn to a meaSUl\ement text such as 
that by Allen and Yen (1979) or Crocker and Algina (1986), 
where the result is demonsttated. 

How realistic are the assumptions of the previous para­
graph? In practice, we can never know th~t true scores on .two 
tests are either exactly equal or perfectly lmearly related, smce 
we can never know true scores. But we can construct tests so as 
to make it likely that examinees' true scores on the tests are 
equal or nearly so. For example, we can write items in matched 
pairs, where each item in a pair resembles th~ other greatly, 
both in. the skill or knowledge tested and m the level of 
difficulty of the tasks presented. Tests constructed in this way 
are referred to as alternate forms. The aim in constructing 
alternate forms is that "it shouldn't matter which one we use," 
and that they should measure the same ability at the same level 
of difficulty. Ifthis aim were achieved exactly, we could refer to 
the two forms as parallel. Parallel test forms satisfy the 
assumptions outlined earlier-in particular, that an~ person 
will have the same true score and the same varIance of 
measurement errors on either test form. In practice, the best 
we can do is construct alternate forms with sufficient care that 
we are willing to believe they are parallel, or very nearly so, If 
they were exactly parallel, we would be able to calculate t~e 
value of the reliability coefficient; because the best we can say IS 
that we believe the forms to be approximately parallel, we 
should regard the correlation between scores from alternate 
test forms as an approximation to the reliability coefficient. 
The closer the two forms are to being truly parallel, the better 
the approximation will be. Although we cannot assert categori­
cally that the two mathematics tests used to obtain the data 
plotted in Figure 1 are parallel, if we treat them as parallel, the 
scores of the 199 students on these tests yield an estimate of 
reliability of 0,63. The corresponding estimate of reliability for 
the vocabulary test scores plotted in Figure 2 is 0.86, 
corroborating our earlier suggestion that the vocabulary test 
scores appear more reliable than the math test scores. 

What can be done to estimate reliability if there is only one 
fonn of a test? One possibility is to administer the test twice, 
with an interval oftime between the two administrations. This 
approach has obvious drawbacks-examinees may remember 
questions and learn the answers i~ the interval be~ween 
administrations, in which case theIr true scores Will be 
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different from one administration to the other; they may 
remember the answers they gave to questions on the first 
administration and repeat them, right or wrong, on the second 
administration, in which case the errors of measurement on 
the two administrations will not be independent in the way 
they are assumed to be. 

Despite the foregoing drawbacks, a second administration is 
the only way to obtain the repeated measurements needed to 
estimate reliability when a test consists of only one task or 
exercise, such as a test that gave examinees the task of writing 
a single essay. But if the test is composed of a number of parts 
or items, as is the typical multiple-choice test and the essay test 
that contains several separate questions, then the index known 
as Coefficient Alpha can be computed. In effect, the separate 
parts of the test serve as repeated measures, and the 
interrelationships among scores on these parts provide informa­
tion about reliability. (If the items of the test are scored 
correct/incorrect, as in the typical multiple-choice test, a special 

Reliability is dependent on 
characteristics of the test, the 

conditions of administration, and 
the group of examinees. 

form of Coefficierlt Alpha known as the Kuder-Richardson 
Formula 20 or KR-20 index can be computed.) For further 
information about Coefficient Alpha or the KR-20 index, the 
reader is directed to a measurement text, such as the 
aforementioned book by Allen and Yen (1979) or that by 
Crocker and Algina (1986). 

Interpreting Reliability Coefficients 
The formulas developed in classical reliability theory lend 
themselves to several different but complementary interpreta­
tions of the reliability coefficient. First, note that the reliability 
coefficient is, by definition, equal to the proportion of observed­
score variance that is attributable to true scores. Therefore 
reliability may be thought of as true, or systematic, variance. If 
we estimate the reliability of a test to be 0.91, for example, we 
may interpret this as telling us that an estimated 91 percent of 
the observed variance in scores is due to systematic differences 
in examinee performance, the remainder to chance differences. 
But also, we note from Equation (4) that the reliability 
coefficient is one less the proportion of error variance. A 
relatively high reliability coefficient, therefore, indicates a 
relative lack of error variance. For the test just described, we 
may conclude that a proportion of (1 - 0.91), or 9 percent, of 
the observed variance is due to measurement error. Finally, 
since the reliability coefficient has also been shown to equal the 
correlation between parallel measures, we may think of reliabil­
ity in terms of correlation. A reliability coefficient of 0.91 tells 
us that the scores from the test could be expected to correlate 
0.91 with the scores from a parallel test. 

The size of the estimated reliability coefficient for a set of 
test scores will depend on the sources of errors that potentially 
can affect the test scores. Which sources of errors these are 
depends on the way the test scores are obtained. We would 
expect, for example, the estimate of reliability obtained by 
correlating scores for the same test administered on two 
occasions separated by a week to be larger than the estimate 
obtained by correlating scores from alternate forms adminis­
tered on occasions separated by two months. The possibility of 
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score inconsistencies due to changes in examinee ability and 
motivation, changes that vary randomly in size from one 
examinee to another, is more likely over a two-month interval 
than over a week. Also, the alternate forms situation will 
include score inconsistencies, if they arise, due to the different 
items comprising the forms. The latter source of inconsistency 
cannot affect scores when the same test is administered on both 
occasions. In studying the information in test manuals, it is 
important to note not only the size of the reliability coefficients 
reported, but also the type of estimate reported, the kinds of 
error that it acknowledges, and the population of examinees 
that was sampled. 

More recent developments in the theory of reliability, known 
as generalizability theory, have shown us how to think about 
multiple sources of error and how to design the gathering of 
data so as to permit us to estimate the separate contributions of 
several sources of error to test scores. Generalizability theory 
may be seen as an extension of classical reliability theory that 
recognizes and distinguishes among the many potential sources 
of error in test scores or other data about the behavior of 
individuals. Alternatively, classical reliability theory may be 
seen as a special case of the more general theory, which is 
applicable when you do not wish to distinguish among the 
various sources of measurement error. More information 
about generalizability theory can be obtained from a reading of 
Brennan (1983), Brennan and Kane (1979), Crocker and 
Algina (1986), and Feldt and BrennanU 989). 

What Makes a Test Reliable? 
This is actually the wrong question, since a test by itself is 
neither reliable nor unreliable. When a test is used to assign 
scores to individuals, the scores that are obtained may be 
reliable or they may be unreliable; it is the scores that have the 
property of reliability, and not the test itself. Nevertheless, we 
often need to ask ourselves the following question: Under what 
circumstances do tests produce reliable scores? We may con­
sider this question by turning our attention, first, to the test 
itself, second, to the conditions under which the test is 
administered, and, third, to the group of examinees being 
tested. It is the interaction among all three of these factors that 
determines the reliability of a test. 

The Test 
Test length. Generally speaking, longer tests yield more 

reliable scores than shorter tests. Any test may be thought of as 
a sample of tasks, and if the sample is too small, chance in the 
selection of tasks will play too great a part in determining the 
scores that students obtain. 

The relationship between reliability and test length has been 
shown to follow a simple mathematical relationship, described 
by the Spearman-Brown formula: 

Pnn' = npllJ[l + (n - l)Pll'] 

where 

Pll' is the reliability of the original test, 
Pnn' is the reliability of the lengthened test, and 

n is the factor by which the test is lengthened. 

(5) 

To see how this formula works, consider the situation in 
which a classroom teacher has administered a 30-item test to a 
class and estimates the reliability of the test to be 0.72. She 
wonders whether it would be worth lengthening the test to 
obtain greater reliability. Suppose that the school scheduling is 
such that doubling the number of items is the maximum that 
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she could consider. Putting n equal to 2 in the Spearman­
Brown formula, she arrives at a version of the formula that 
predicts the effect of doubling test length on reliability: 

P22' = 2Pll./(1 + Pll') (6) 

In the particular case we are considering, the predicted 
reliability for the 60-item test would be 

P22' = 2(0.72)/(1 + 0.72) 

or, approximately, 0.84. She may then decide whether the 
increased reliability is sufficient to warrant the extra work in 
developing a longer test, and the extra testing time required to 
use it. Note also that, ifthe length were doubled again, to 120 
items, the Spearman-Brown formula would predict that the 
reliability would increase further to 2(0.84)/(1 + 0.84) or, 
approximately, 0.91. There are two things to note about this 
prediction. First, beyond a certain point, the reward, in terms 
of increased reliability, for increases in test length begins to 
diminish; the last 60 items have increased the predicted 
reliability rather less than did the previous 30. Second, the 
prediction is becoming exceedingly risky at this point. For the 
Spearman-Brown formula to apply, it is necessary that the 
additional items function in the same way as those already 
present. They should be of the same type (multiple-choice, 
short-answer, etc.) and should test similar knowledge and 
skills. But also it is necessary that the students should 
approach them similarly; if the length of the test is such that 
fatigue, boredom, or resentment begin to affect the students' 
behavior, we could not expect the formula to give us sensible 
predictions. 

Item type. Generally speaking, more reliable scores come 
from tests in which the items can be scored objectively than 
from tests in which the scoring involves an element of subjectiv­
ity. Objective tests are usually more reliable than essay tests of 
the same length (measured in terms of total testing time) for 
two reasons: first, they eliminate scorer inconsistency as a 
source of measurement error, and, secondly, they are able to 
cover more content, thus reducing the unreliability that can 
result from luck in the selection of questions. In general, then, 
for a given testing time, the greater reliability will be obtained 
by using a larger number of shorter, more objectively scorable 
items than from using a smaller number of longer, less 
objectively scorable tasks. 

Item quality. Poor quality items will detract from the 
reliability of almost any test. When items are unclear or even 
ambiguous, error will be introduced by the varying interpreta­
tions that students may place on the items, When an item is 
much too difficult for the students being tested, they will either 
not answer it or guess. Guessing adds an element of random­
ness to scores: some gain a mark through chance; others of 
equal ability are not so rewarded, When an item is so easy that 
all students can answer it correctly, it does not detract from 
test reliability, but it does nothing to enhance it. The effect of 
adding such an item to a test is the same as that of adding one 
mark to each student's score-while the scores are all that 
much higher, the capacity of the test to make reliable distinc­
tions among students is unaffected. Items that contribute most 
to test reliability are those that discriminate-in the technical 
sense, this refers to items on which students who possess the 
knowledge and skill needed to answer the question correctly 
have a better chance of success than students not in possession 
of this knowledge and skill. Items that are either very easy or 
very difficult for all the students being tested cannot be good 
discriminators. Therefore, it can be said that in order to 
maximize reliability a test should be pitched at a level of 
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difficulty that matches the abilities of the students, neither too 
easy for them nor (the worse of the two) too difficult, 

The Conditions of Administration 
Here we refer to the physical conditions under which the test is 
administered (e.g., the light, noise and temperature levels of ' 
the testing room), the instructions used to set the task for the 
examinees, the time limits imposed (if any), and the person 
administering the test (e.g., the individual's vigilance in detect­
ing copying and other forms of cheating, and ability to cope 
with the contingencies that inevitably arise during the adminis­
tration of a test). To the extent that these factors vary 
unpredictably from one administration of the test to another, 
and to the extent that the conditions in effect during an 
administration affect some examinees differently from the way 
they affect other examinees, test scores will vary for reasons 
other than differences among the examinees in the knowledge 
and skill being tested. Effects of this kind work to reduce 
reliability by introducing unwanted sources of random varia­
tion or measurement error into the test scores. The above ideas 
are elaborated with reference to two aspects of the administra­
tion of a test. 

Instructions. Consider the matter of guessing the answers to 
multiple-choice test items. It has been common practice in the 
past for test developers not to consider guessing in the instruc­
tions that examinees receive at the beginning of a test session. 
Consequently, examinees have differed in their test-taking 
behavior for reasons deriving from differenCes' in willingness to 
guess, not differences in knowledge and skill in the subject 
being tested. Greater control of guessing behavior, albeit 
imperfect control, can be achieved by giving all examinees the 
same instruction for how to respond to items that cannot be 
answered correctly from knowledge. For example, instructing 
examinees to answer every question and to guess if necessary 
and, in addition, informing examinees that wrong answers will 
receive the same (zero) credit as omitted answers, should have 
the effect of reducing, possibly even eliminating, the effect on 
test scores of differences among examinees in willingness to 
guess. 

Time limits. An important condition of the test administra­
tion is whether or not the time allowed is sufficiently long for 
all or almost all examinees to finish the test. If the test is 
speeded, then one of the abilities required to do well is the 
ability to work quickly. Tests that must be worked quickly may 
appear to be more reliable than tests that do not emphasize 
speed for the reason that speed of work may be an attribute on 
which examinees differ consistently. Reliability will be en­
hanced, however, at the cost of the test's validity, for the 
speeded instrument will be measuring something different 
from what it was intended to measure. More important, from 
the per pective of assessing test reliability, is the fact that no 
met.hod of estimating reliability from the results of a single 
administration of a test wiU be satisfactory because, however 
the test is divided so as to provide the repeated measurements 
needed for estimating reliability, the scores for some parts will 
be more affected by the time limitation than the scores for 
other parts. (We expect performance of items near the end of a 
test to be most affected by the imposition of a strict time limit.) 
The only way to gauge the reliability of highly speeded tests is 
to employ at least two alternate forms, administering them in 
separately timed sessions. 

The Group of Examinees 
The size of the reliability coefficient depends on the range of 
true differences in ability in the group of examinees tested. A 
group in which the range of ability is narrow will yield a lower 
index of reliability than a group in which the range of ability is 
broad, even though the measuring instrument is the same for 
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both groups. This property has interesting consequences, 
which have caused some to question the value of the reliability 
coefficient in certain applications of testing. Consider the 
situation, for example, in which the same test is used in 
successive years for the same course. The instructor becomes 
more effective each year, and the students achieve the course 
objectives more fully. Soon we will reach the situation in which 
many students will be scoring so highly there will be little 
further room for improvement. As more students reach this 
level, the scores of the group will become compressed into the 
top of the score range, and the score variance will become 
smaller. Consequently, the reliability coefficient will become 
successively smaller, and, in an apparent paradox, the more 
effective the instruction, the less reliable the measurement will 
appear to be. There is no paradox, however, provided we keep 
in mind just what property of a test is indexed by the reliability 
coefficient. We are looking at the capability of the test to make 
reliable distinctions among the group of examinees with re­
spect to the ability measured by the test. If there is a great 
range of ability in a group, a good test should be able to do this 
very well. But if the examinees differ very little from one 
another, as they will if the test covers a limited range of tasks in 
which all examinees are highly skilled, reliable distinctions will 
be difficult to make, even with a test of high quality. A low 
reliability coefficient does not necessarily mean that the test is 
of poor quality, and in some circumstances a poor test might 
measure with high reliability. (These considerations come into 
play in assessing the quality of so-called criterion-referenced 
tests.) We should not, therefore, think of reliability as telling us 
all that we need to know about test quality. A reliability 
coefficient tells us 'about a quality of a test (and one that we 
usually value), but not about the quality of the test. 

Self-Test 
Indicate whether each of the following 10 statements is true or 
false. If a statement is false, revise it to be true. 

44 

1. A reliability coefficient describes the consistency with 
which a test measures some characteristic of one 
person. 

2. If the students in a group are tested twice, using 
parallel forms of a test, if the pair of scores for each 
student defines a point in a scatter plot of Form I scores 
against Form II scores, and if all the plotted points lie 
on the 45 degree line through the origin (0,0 coordi­
nate) of the graph, then the reliability of the test, as 
estimated by the coefficient of correlation between 
scores on the two test forms, is 1. 

3. Through an error of computer programming, all the 
university applicants who took an admission test were 
credited with 10 more correct answers than they really 
earned on the test. This mistake added error of measure­
ment to the test scores. 

4. Suppose a class of students, none of whom has studied 
the branch of mathematics known as calculus, is given 
a multiple-choice test of the common derivatives of 
differential calculus. Each student guesses the answer 
to every question. The variance of the students' scores 
on this test will be composed of some true-score 
variance and some error-score variance. 

5. A sample of 100 students from a well-defined popula­
tion is administered two parallel forms of a test, the 
administrations being separated by a week. If the 
coefficient of correlation between the scores on the two 
test forms is 0.9, then these test scores provide an 
estimate of reliability for the test equal to 0.92 or 0.81. 

6. Two test publishers, A and B, each develop two parallel 
forms of a test of punctuation skills. The reliability of 
Publisher A's test is estimated by administering both 
test forms to a sample of fifth grade students. Pub-

lisher B obtains an estimate of reliability for its test by 
administering both forms to a sample of students 
drawn from the fifth, sixth and seventh grades. If the 
tests for both publishers are equal in length and if the 
administrations of the parallel forms of each publisher 
are separated by one week, the estimates of reliability 
for both tests will most likely be about the same. 

7. The scores on a multiple-choice test will be more 
reliable than the scores on a free-response test of the 
same knowledge, provided both tests are of the same 
length and the two groups of examinees involved in the 
reliability-estimation experiments, one group for the 
multiple-choice test and one for the free-response test, 
are randomly equivalent in ability and knowledge. 

8. A coefficient of correlation between the scores for a 
group of examinees on parallel forms of a speeded test 
yields an acceptable estimate of reliability for the test. 

9. If a test is doubled in length, the reliability of scores on 
the lengthened test will very likely be twice the reliabil­
ity of scores on the test at its original (undoubled) 
length. 

10. If the correlation between scores on parallel forms of a 
test is used to estimate reliability, then the range of 
possible values for the reliability coefficient must be -1 
to +1. 

Self-Test Key and Explanations 
1. False. Reliability coefficients describe the consistency 

with which test scores are assigned the members of a 
population of persons. A reliability coefficient involves 
the notion of true-score variance. If we have several 
test scores for one person, and these scores measure 
the same characteristic of the person in the same way, 
then any inconsistency in the scores is an indicator of 
error of measurement. The true score of the person, 
within reasonable limits, is assumed not to differ from 
one of these measurements to another. (See section of 
Understanding Reliability entitled "Formalization.") 

2. True. The coefficient of correlation between the scores 
of a sample of examinees on parallel forms of a test 
provides an estimate of the reliability of the scores 
examinees earn on either test form. The fact that the 
plotted scores lie on a straight line with a positive slope 
(i.e., scores on the test defining the ordinate or vertical 
axis of the plot increase as scores on the test defining 
the abscissa or horizontal axis increase) means that the 
correlation coefficient will be + 1. (See section of Under­
standing Reliability entitled "Graphical Treatment.") 

3. False. Measurement error is random from person to 
person, not systematic and constant for all persons, as 
in this question. The computer programming error 
results in each person having an apparent true score 
that is 10 points larger than it should be. (See section of 
Understanding Reliability entitled "Graphical Treat­
ment.") 

4. False. Students who are totally ignorant of calculus, as 
these students are alleged to be, will have to answer the 
multiple-choice questions by guessing. All differences 
among their test scores will then be due only to chance, 
with the students who receive higher scores being 
luckier (not more knowledgeable) than those who 
receive lower scores. In this case all variance in test 
scores must be due to error of measurement. (See 
section of Understanding Reliability entitled "Formali­
zation.") 

5. False. The reliability of a test, defined as the ratio of 
true-score variance to the variance of the observed test 
scores, is equal to the coefficient of correlation between 
scores on parallel forms of the test, not the square of 
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the coefficient of correlation. (See section of Under­
standing Reliability entitled "Estimating Reliability.") 

6. False. In addition to such factors of the test as length 
and to such conditions of the test administrations as 
the length of time between them (here, one week for 
the test of each publisher), estimates of reliability 
depend on the range of ability in the group tested. It is 
very likely that the range of differences in punctuation 
skills is wider in the group of students tested by 
Publisher B than it is in the group tested by Publisher 
A. All other things being equal, then, we expect the 
estimate of reliability for the test of Publisher B to be 
larger than the estimate of reliability for the test of 
Publisher A. (See section of Understanding Reliability 
entitled "What Makes a Test Reliable.") 

7. Uncertain. The reliability of a multiple-choice test is 
attenuated or reduced by the guessing that can occur 
when examinees who don't know the answer attempt 
the question anyway. This source of unreliability either 
doesn't exist for the free-response test or is greatly 
reduced by the fact that the examinee who doesn't 
know the correct answer cannot simply choose one of a 
small set of multiple-choices for his or her answer. The 
examinee who guesses the answer to an item on a 
free-response test must produce a response, which in 
the face of total ignorance is unlikely to be correct. On 
the other hand, free-response answers must be scored 
by judges, and judges rarely achieve unanimous agree­
ment on the marks to be assigned a free-response 
answer, especially one of any length. This source of 
unreliability, disagreements among judges as to the 
worth of answers, does not affect the scoring of multiple­
choice tests. Which of the multiple-choice and the 
free-response tests will be the more reliable depends on 
which source of unreliability, guessing or scorer dis­
agreements, affects test scores the most. An empirical 
study is required to answer this question. (See section 
of Understanding Reliability entitled "What Makes a 
Test Reliable.") 

8. True. Parallel forms of a speeded test, if separately and 
independently administered to a sample of examinees, 
will provide independent estimates of each examinee's 
ability to perform the test. These scores may be corre­
lated to produce an estimate of the reliability of the 
test. Two scores derived from examinee performance of 
only one form of a speeded test, e.g., the performance of 
odd-numbered items versus the performance of even­
numbered items, are not independent when the test is 
speeded and hence do not provide a satisfactory basis 
for estimating reliability. (See section of Understand­
ing Reliability entitled "Estimating Reliability.") 

9. False. The relation between length and reliability is not 
one of simple proportionality. The Spearman-Brown 
formula provides an estimate of the reliability of a 
lengthened test. If a test of reliability 0.6 is doubled in 
length, the reliability of the lengthened test is esti­
mated to be .75 [=(2 x 0.6)/(1 + 0.6)]. (See section of 
Understanding Reliability entitled "What Makes a 
Test Reliable.") 

10. False, at least in theory. The reliability coefficient is, by 
definition, the ratio of two variances, and a variance is 
always greater than or equal to zero. Assuming the 
denominator ofthe ratio, the observed-score variance, 
is greater than zero, it follows that the reliability 
coefficient must in theory always be greater than or 
equal to zero. Practice can, of course, differ from 
theory. In practice, the estimate of a reliability coeffi­
cient might be negative, as it would be if two suppos­
edly parallel forms of a test produced scores that gave 
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rise to a negative coefficient of correlation. But if a 
negative parallel-forms estimate of reliability were 
obtained, we would be led to question whether the 
forms really were parallel measures of the same charac­
teristic. Alternatively, we would question the proce­
dure followed in administering the two tests, or some 
other feature of the experiment that was conducted to 
obtain the scores that were correlated. (See sections of 
Understanding Reliability entitled "Formalization" 
and "Estimating Reliability.") 
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